Â
 n āĻāĻāĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻž āĻšāϞā§, (n.90° Âą θ) āĻā§āĻŖā§āϰ āϤā§āϰāĻŋāĻā§āĻŖāĻŽāĻŋāϤāĻŋāĻ āĻ āύā§āĻĒāĻžāϤ āύāĻŋāϰā§āĻŖā§
(n.90° Âą θ) āĻā§āĻŖā§āϰ āϤā§āϰāĻŋāĻā§āĻŖāĻŽāĻŋāϤāĻŋāĻ āĻ āύā§āĻĒāĻžāϤāĻā§ āύāĻŋāϰā§āĻĻāĻŋāώā§āĻ āύāĻŋā§āĻŽ āĻ āύā§āϝāĻžā§ā§ θ āϏā§āĻā§āώā§āĻŽāĻā§āĻŖā§āϰ āϤā§āϰāĻŋāĻā§āĻŖāĻŽāĻŋāϤāĻŋāĻ āĻ āύā§āĻĒāĻžāϤ⧠āϰā§āĻĒāĻžāύā§āϤāϰāĻŋāϤ āĻāϰāĻž āϝāĻžā§āĨ¤ āϰā§āĻĒāĻžāύā§āϤāϰāĻŋāϤ āĻ āύā§āĻĒāĻžāϤ āĻ āϤāĻžāϰ āĻāĻŋāĻšā§āύ āύāĻŋāϰā§āĻāϰ āĻāϰ⧠āĻŽā§āϞ āĻ āύā§āĻĒāĻžāϤ āĻ n āĻāϰ āĻŽāĻžāύā§āϰ āĻāĻĒāϰāĨ¤ āϰā§āĻĒāĻžāύā§āϤāϰā§āϰ āύāĻŋā§āĻŽāĻā§āϞ⧠āύāĻŋāĻŽā§āύ⧠āĻŦāϰā§āĻŖāύāĻž āĻāϰāĻž āĻšāϞ:
n āĻā§ā§: āĻ āύā§āĻĒāĻžāϤ āĻ āĻĒāϰāĻŋāĻŦāϰā§āϤāĻŋāϤ āĻĨāĻžāĻā§āĨ¤
                                                                               sin (n.90° ¹ θ) = sin θ
                                                                               cos (n.90° ¹ θ) = cos θ
                                                                               tan (n.90° ¹ θ) = tan θ
                                                                               cot (n.90° ¹ θ) = cot θ
                                                                               sec (n.90° ¹ θ) = sec θ
                                                                               cosec (n.90° ¹ θ) = cosec θ
n āĻŦāĻŋāĻā§ā§: āĻ āύā§āĻĒāĻžāϤ āϏāĻš-āĻ āύā§āĻĒāĻžāϤ⧠āĻĒāϰāĻŋāĻŦāϰā§āϤāĻŋāϤ āĻšā§āĨ¤ āĻ āϰā§āĻĨāĻžā§,
                                                                               sin (n.90° ¹ θ) = cos θ
                                                                               cos (n.90° ¹ θ) = sin θ
                                                                              tan (n.90° ¹ θ) = cot θ
                                                                               cot (n.90° ¹ θ) = tan θ
                                                                               sec (n.90° ¹ θ) = cosec θ
                                                                               cosec (n.90° ¹ θ) = sec θ
(n.90° Âą θ) āĻāϰ āĻ āĻŦāϏā§āĻĨāĻžāύ ā§§āĻŽ āĻāϤā§āϰā§āĻāĻžāĻā§: āύāϤā§āύ āĻ āύā§āĻĒāĻžāϤ āϧāύāĻžāϤā§āĻŽāĻ
(n.90° Âą θ) āĻāϰ āĻ āĻŦāϏā§āĻĨāĻžāύ ⧍⧠āĻāϤā§āϰā§āĻāĻžāĻā§: āĻŽā§āϞ āĻ āύā§āĻĒāĻžāϤ sin āĻŦāĻž cosec āĻšāϞ⧠āύāϤā§āύ āĻ āύā§āĻĒāĻžāϤ āϧāύāĻžāϤā§āĻŽāĻ, āϤāĻž āύāĻžāĻšāϞ⧠āύāϤā§āύ āĻ āύā§āĻĒāĻžāϤ āĻāĻŖāĻžāϤā§āĻŽāĻāĨ¤
(n.90° Âą θ) āĻāϰ āĻ āĻŦāϏā§āĻĨāĻžāύ ā§Šā§ āĻāϤā§āϰā§āĻāĻžāĻā§: āĻŽā§āϞ āĻ āύā§āĻĒāĻžāϤ tan āĻŦāĻž cot āĻšāϞ⧠āύāϤā§āύ āĻ āύā§āĻĒāĻžāϤ āϧāύāĻžāϤā§āĻŽāĻ, āϤāĻž āύāĻžāĻšāϞ⧠āύāϤā§āύ āĻ āύā§āĻĒāĻžāϤ āĻāĻŖāĻžāϤā§āĻŽāĻāĨ¤
(n.90° Âą θ) āĻāϰ āĻ āĻŦāϏā§āĻĨāĻžāύ ā§Ēāϰā§āĻĨ āĻāϤā§āϰā§āĻāĻžāĻā§: āĻŽā§āϞ āĻ āύā§āĻĒāĻžāϤ cos āĻŦāĻž sec āĻšāϞ⧠āύāϤā§āύ āĻ āύā§āĻĒāĻžāϤ āϧāύāĻžāϤā§āĻŽāĻ, āϤāĻž āύāĻžāĻšāϞ⧠āύāϤā§āύ āĻ āύā§āĻĒāĻžāϤ āĻāĻŖāĻžāϤā§āĻŽāĻāĨ¤

āϝā§āĻāĻŋāĻ āĻā§āĻŖā§āϰ āϤā§āϰāĻŋāĻā§āĻŖāĻŽāĻŋāϤāĻŋāĻ āĻ āύā§āĻĒāĻžāϤ
                          1. sin (A + B) = sin A cos B + cos A sin B
                                                                               2. sin (A â B) = sin A cos B â cos A sin B
                                                                               3. cos (A + B) = cos A cos B â sin A sin B
                                                                               4. cos (A â B) = cos A cos B + sin A sin B
                                                                               5. $\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$
                                         6. $\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}$
                                        7. $\cot (A+B)=\frac{\cot A \cot B-1}{\cot B+\cot A}$
                                        8. $\cot (A-B)=\frac{\cot A \cot B+1}{\cot B-\cot A}$
Â
                                                                               9. sin (A + B) sin (A â B) = sin2 A â sin2 B = cos2 B â cos2 A
                                                                               10. cos (A + B) cos (A â B) = cos2 A â sin2 B = cos2 B â sin2 A
                                                                               11. sin (A + B + C) = cos A cos B cos C (tan A + tan B + tan C â tan A tan B tan C)
                                                                               12. cos (A + B + C) = cos A cos B cos C (1 â tan A tan B â tan B tan C â tan C tan A)
                                                                               13. $\tan (A+B+C)=\frac{\tan A+\tan B+\tan C-\tan A \tan B \tan C}{1-\tan A \tan B-\tan B \tan C-\tan C \tan A}$
Â
āϤā§āϰāĻŋāĻā§āĻŖāĻŽāĻŋāϤāĻŋāĻ āĻ āύā§āĻĒāĻžāϤā§āϰ āĻā§āĻŖāĻĢāϞ āϝā§āĻ āĻŦāĻž āĻŦāĻŋā§ā§āĻāĻĢāϞ⧠āϰā§āĻĒāĻžāύā§āϤāϰ
                                                                               1. 2 sin A cos B = sin (A + B) + sin (A â B)
                                                                               2. 2 cos A sin B = sin (A + B) â sin (A â B)
                                                                               3. 2 cos A cos B = cos (A + B) + cos (A â B)
                                                                               4. 2 sin A sin B = cos (A â B) â cos (A + B)
Â
āϤā§āϰāĻŋāĻā§āĻŖāĻŽāĻŋāϤāĻŋāĻ āĻ āύā§āĻĒāĻžāϤā§āϰ āϝā§āĻ āĻŦāĻž āĻŦāĻŋā§ā§āĻāĻĢāϞ āĻā§āĻŖāĻĢāϞ⧠āϰā§āĻĒāĻžāύā§āϤāϰ
                                                                               1. $\sin C+\sin D=2 \sin \frac{\mathrm{C}+\mathrm{D}}{2} \cos \frac{\mathrm{c}-\mathrm{D}}{2}$
                                        2. $\sin C-\sin D=2 \cos \frac{C+D}{2} \sin \frac{C-D}{2}$
                                        3. $\cos C+\cos D=2 \cos \frac{C+D}{2} \cos \frac{C-D}{2}$
                                        4. $\cos D-\cos C=2 \sin \frac{C+D}{2} \sin \frac{C-D}{2}$
                                        5. $\cos C-\cos D=2 \sin \frac{\mathrm{C}+\mathrm{D}}{2} \sin \frac{\mathrm{D}-\mathrm{C}}{2}$
Â
āĻā§āĻŖāĻŋāϤāĻ āĻā§āĻŖā§āϰ āϤā§āϰāĻŋāĻā§āĻŖāĻŽāĻŋāϤāĻŋāĻ āĻ āύā§āĻĒāĻžāϤ
                                                                               1. $\sin 2 \mathrm{~A}=2 \sin A \cos A=\frac{2 \tan \mathrm{A}}{1+\tan ^{2} \mathrm{~A}}$
2. $\cos 2 \mathrm{~A}=\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A}=2 \cos ^{2} \mathrm{~A}-1=1-2 \sin ^{2} \mathrm{~A}=\frac{1-\tan ^{2} \mathrm{~A}}{1+\tan ^{2} \mathrm{~A}}$
3. $\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}$
$4 \cdot \sin 3 A=3 \sin A-4 \sin ^{3} A$
5. $\cos 3 A=4 \cos ^{3} A-3 \cos A$
6. $\tan 3 \mathrm{~A}=\frac{3 \tan \mathrm{A}-\tan ^{3} \mathrm{~A}}{1-3 \tan ^{2} \mathrm{~A}}$
āĻāĻĒāĻā§āĻŖāĻŋāϤāĻ āĻā§āĻŖā§āϰ āϤā§āϰāĻŋāĻā§āĻŖāĻŽāĻŋāϤāĻŋāĻ āĻ āύā§āĻĒāĻžāϤ: āĻā§āĻŖāĻŋāϤāĻ āĻā§āĻŖā§āϰ āϏā§āϤā§āϰ āĻĨā§āĻā§ āϏāĻšāĻā§āĻ āĻāĻĒāĻā§āĻŖāĻŋāϤāĻ āĻā§āĻŖā§āϰ āϏā§āϤā§āϰ āĻŦā§āϰ āĻāϰāĻž āϝāĻžā§āĨ¤ āĻĻā§āĻŦāĻŋāĻā§āĻŖāĻŋāϤāĻ āϏā§āϤā§āϰ⧠$\mathrm{A}=\frac{\theta}{2}$ āĻāĻŦāĻ āϤā§āϰāĻŋāĻā§āĻŖāĻŋāϤāĻ āϏā§āϤā§āϰ⧠$\mathrm{A}=\frac{\theta}{3}$ āĻŦāϏāĻžāϞā§āĻ āĻāĻĒāĻā§āĻŖāĻŋāϤāĻ āĻā§āĻŖā§āϰ āϤā§āϰāĻŋāĻā§āĻŖāĻŽāĻŋāϤāĻŋāĻ āĻ āύā§āĻĒāĻžāϤā§āϰ āϏā§āϤā§āϰ āĻĒāĻžāĻā§āĻž āϝāĻžā§āĨ¤
1. $\sin \theta=2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}=\frac{2 \tan \frac{\theta}{2}}{1+\tan ^{2} \frac{\theta}{2}}$
2. $\cos \theta=\cos ^{2} \frac{\theta}{2}-\sin ^{2} \frac{\theta}{2}=2 \cos ^{2} \frac{\theta}{2}-1=1-2 \sin ^{2} \frac{\theta}{2}=\frac{1-\tan ^{2} \frac{\theta}{2}}{1+\tan 2 \frac{\theta}{2}}$
3. $\tan \theta=\frac{2 \tan \frac{\theta}{2}}{1-\tan ^{2} \frac{\theta}{2}}$
4. $\sin \theta=3 \sin \frac{\theta}{3}-4 \sin ^{3} \frac{\theta}{3}$
5. $\cos \theta=4 \cos ^{3} \frac{\theta}{3}-3 \cos \frac{\theta}{3}$
6. $\tan \theta=\frac{3 \tan \frac{\theta}{3}-\tan ^{3} \frac{\theta}{3}}{1-3 \tan ^{2} \frac{\theta}{8}}$
Â
āĻāĻĻāĻžāĻšāϰāĻŖ 1. āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰ
(i) cos 690°
(ii) sin (â 1395°)
(iii) $\operatorname{cosec}\left(\frac{16 \pi}{3}\right)$
āϏāĻŽāĻžāϧāĻžāύ:
(i)
cos 690° = cos (7Ã90° + 60°)
āĻāĻā§āώā§āϤā§āϰ⧠n = 7 āϝāĻž āĻŦāĻŋāĻā§ā§ āϏā§āϤāϰāĻžāĻ cos āϏāĻš-āĻ āύā§āĻĒāĻžāϤ sin āĻ āĻĒāϰāĻŋāĻŦāϰā§āϤāĻŋāϤ āĻšāĻŦā§āĨ¤
āĻāĻŦāĻžāϰ, āĻĒā§āϰāϤāĻŋ āĻāϤā§āϰā§āĻāĻžāĻ āĻ āϤāĻŋāĻā§āϰāĻŽ āĻāϰāĻž āĻŽāĻžāύ⧠90° āĻāϰ⧠āĻā§āĻŖ āĻ āϤāĻŋāĻā§āϰāĻŽ āĻāϰāĻžāĨ¤ āĻāĻā§āώā§āϤā§āϰ⧠āĻā§āĻŋāϰ āĻāĻžāĻāĻāĻžāϰ āĻŦāĻŋāĻĒāϰā§āϤ āĻĻāĻŋāĻā§ 7āĻāĻŋ āĻāϤā§āϰā§āĻāĻžāĻ āĻ āϤāĻŋāĻā§āϰāĻŽ āĻāϰ⧠āĻāϰāĻ 45° āĻā§āϞ⧠āύāĻŋāϰā§āĻŖā§ā§ āĻā§āĻŖā§āϰ āĻĒā§āϰāĻžāύā§āϤāĻŋāĻ āĻŦāĻžāĻšā§āϰ āĻ āĻŦāϏā§āĻĨāĻžāύ āĻšā§ āĻāϤā§āϰā§āĻĨ āĻāϤā§āϰā§āĻāĻžāĻā§ āϝā§āĻāĻžāύ⧠cos āϧāύāĻžāϤā§āĻŽāĻāĨ¤Â [(n.90° Âą θ) āĻā§āĻŖā§āϰ āϤā§āϰāĻŋāĻā§āĻŖāĻŽāĻŋāϤāĻŋāĻ āĻ āύā§āĻĒāĻžāϤ āύāĻŋāϰā§āĻŖā§]
ⴠcos 690° = sin 60° =
           [0°, 30°, 45°, 60° āĻ 90° āĻā§āĻŖā§āϰ āϤā§āϰāĻŋāĻā§āĻŖāĻŽāĻŋāϤāĻŋāĻ āĻ
āύā§āĻĒāĻžāϤāĻā§āϞā§āϰ āĻŽāĻžāύ]
āĻ āĻĨāĻŦāĻž,
cos 690° = cos (8Ã90° â 30°)
āĻāĻā§āώā§āϤā§āϰā§, n = 8 āϝāĻž āĻā§ā§ āϏā§āϤāϰāĻžāĻ āĻ āύā§āĻĒāĻžāϤ āĻ āĻĒāϰāĻŋāĻŦāϰā§āϤāĻŋāϤ āĻĨāĻžāĻāĻŦā§āĨ¤
āĻāĻŦāĻžāϰ, āĻā§āĻŋāϰ āĻāĻžāĻāĻāĻžāϰ āĻŦāĻŋāĻĒāϰā§āϤ āĻĻāĻŋāĻā§ 8āĻāĻŋ āĻāϤā§āϰā§āĻāĻžāĻ āĻ āϤāĻŋāĻā§āϰāĻŽ āĻāϰ⧠āĻāϞā§āĻā§ āĻĻāĻŋāĻā§ āĻ āϰā§āĻĨāĻžā§ āĻā§āĻŋāϰ āĻāĻžāĻāĻāĻžāϰ āĻĻāĻŋāĻā§ 30° āĻā§āϞ⧠āύāĻŋāϰā§āĻŖā§ā§ āĻā§āĻŖā§āϰ āĻĒā§āϰāĻžāύā§āϤāĻŋāĻ āĻŦāĻžāĻšā§āϰ āĻ āĻŦāϏā§āĻĨāĻžāύ āĻšā§ āĻāϤā§āϰā§āĻĨ āĻāϤā§āϰā§āĻāĻžāĻā§ āϝā§āĻāĻžāύ⧠cos āϧāύāĻžāϤā§āĻŽāĻāĨ¤
â´ $\cos 690^{\circ}=\sin 60^{\circ}=\frac{\sqrt{3}}{2}$
(ii)
$\sin \left(-1395^{\circ}\right)=-\left\{\sin \left(15 \times 90^{\circ}+45^{\circ}\right)\right\}=-\left(-\cos 45^{\circ}\right)=\frac{1}{\sqrt{2}}$
āĻ āĻĨāĻŦāĻž,
$\sin \left(-1395^{\circ}\right)=-\left\{\sin \left(16 \times 90^{\circ}-45^{\circ}\right)\right\}=-\left(-\sin 45^{\circ}\right)=\frac{1}{\sqrt{2}}$
(iii)
$\operatorname{cosec}\left(\frac{16 \pi}{3}\right)=\operatorname{cosec}\left(5 \pi+\frac{\pi}{3}\right)=\operatorname{cosec}\left(10 \cdot \frac{\pi}{2}+\frac{\pi}{3}\right)=-\operatorname{cosec} \frac{\pi}{3}=\frac{2}{\sqrt{3}}$
Â
āĻāĻĻāĻžāĻšāϰāĻŖ 2. āϝāĻĻāĻŋ A āϏā§āĻā§āώā§āĻŽāĻā§āĻŖ āĻāĻŦāĻ $\sin A=\frac{12}{13}$ āĻšā§, āϤāĻŦā§ cot A āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤
āϏāĻŽāĻžāϧāĻžāύ
āĻĒāĻĻā§āϧāϤāĻŋ 1:
āĻĻā§āĻā§āĻž āĻāĻā§, $\sin A=\frac{12}{13}$
āĻāĻŽāϰāĻž āĻāĻžāύāĻŋ,
$\sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}=1 \Rightarrow \cos ^{2} \mathrm{~A}=1-\sin ^{2} \mathrm{~A} \Rightarrow \cos \mathrm{A}=\pm \sqrt{1-\sin ^{2} \mathrm{~A}}=\pm \sqrt{1-\left(\frac{12}{13}\right)^{2}}=\pm \frac{5}{13}$
āĻāĻŋāύā§āϤ⧠A āϏā§āĻā§āώā§āĻŽāĻā§āĻŖ āĻ āϰā§āĻĨāĻžā§ āĻĒā§āϰāĻžāύā§āϤāĻŋāĻ āĻŦāĻžāĻšā§āϰ āĻ āĻŦāϏā§āĻĨāĻžāύ ā§§āĻŽ āĻāϤā§āϰā§āĻāĻžāĻā§āĨ¤ āϏā§āϤāϰāĻžāĻ cos A āϧāύāĻžāϤā§āĻŽāĻāĨ¤ â´Â $\cos A=\frac{5}{13}$
â´Â $\cot A=\frac{\cos A}{\sin A}=\frac{\frac{5}{13}}{\frac{12}{13}}=\frac{5}{12}$
āĻĒāĻĻā§āϧāϤāĻŋ 2:
āĻŽāύ⧠āĻāϰāĻŋ, BOC āϏāĻŽāĻā§āĻŖā§ āϤā§āϰāĻŋāĻā§āĻā§ â OCB = A
āϤāĻžāĻšāϞā§, $\sin A=\frac{12}{13}=\frac{O B}{B C}$
āĻ āϰā§āĻĨāĻžā§, OB = 12, BC = 13
āĻāĻŋāύā§āϤ⧠āĻĒāĻŋāĻĨāĻžāĻā§āϰāĻžāϏā§āϰ āĻāĻĒāĻĒāĻžāĻĻā§āϝ āĻ āύā§āϏāĻžāϰā§,
$O B^{2}+O C^{2}=B C^{2}$
$\Rightarrow O C^{2}=B C^{2}-O B^{2}$
$\Rightarrow O C=\pm \sqrt{B C^{2}-O B^{2}}$
āĻāĻŋāύā§āϤ⧠āĻā§āύ⧠āĻāĻŋāĻā§āϰ āĻĒāϰāĻŋāĻŽāĻžāĻĒ āĻāĻāύāĻ āĻāĻŖāĻžāϤā§āĻŽāĻ āĻšāϤ⧠āĻĒāĻžāϰ⧠āύāĻžāĨ¤
$\therefore O C=\sqrt{B C^{2}-O B^{2}}=\sqrt{13^{2}-12^{2}}=5$
$\therefore \cot A=\frac{O C}{O B}=\frac{5}{12}$
āĻāĻĻāĻžāĻšāϰāĻŖ 3. āϝāĻĻāĻŋ $\frac{\pi}{2}<\theta<\pi$ āĻāĻŦāĻ $\sin \theta=\frac{5}{13}$ āĻšā§, āϤāĻŦā§ $\frac{\tan \theta+\sec (-\theta)}{\cot \theta+\operatorname{cosec}(-\theta)}$ āĻāϰ āĻŽāĻžāύ āĻāϤ?
āϏāĻŽāĻžāϧāĻžāύ:
āĻāĻāĻžāύā§,$\frac{\pi}{2}<\theta<\pi$ āϏā§āϤāϰāĻžāĻ Î¸ āĻāϰ āĻĒā§āϰāĻžāύā§āϤāĻŋāĻ āĻŦāĻžāĻšā§āϰ āĻ āĻŦāϏā§āĻĨāĻžāύ ⧍⧠āĻāϤā§āϰā§āĻāĻžāĻā§ āĻāĻŦāĻ â θ āĻāϰ āĻĒā§āϰāĻžāύā§āϤāĻŋāĻ āĻŦāĻžāĻšā§āϰ āĻ āĻŦāϏā§āĻĨāĻžāύ ā§Šā§ āĻāϤā§āϰā§āĻāĻžāĻā§āĨ¤
$\therefore \tan \theta=-\frac{5}{12}$
$\therefore \sec (-\theta)=-\frac{13}{12}$
$\therefore \cot \theta=-\frac{12}{5}$
$\therefore \operatorname{cosec}(-\theta)=-\frac{13}{5}$
$\therefore \frac{\tan \theta+\sec (-\theta)}{\cot \theta+\operatorname{cosec}(-\theta)}=\frac{-\frac{5}{12}-\frac{13}{12}}{-\frac{12}{5}-\frac{13}{5}}=\frac{-\frac{18}{12}}{-\frac{25}{5}}=\frac{3}{10}$
āĻāĻĻāĻžāĻšāϰāĻŖ 4. sin 480° cos 750° + cos (â 660°) sin (â 870°) āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤
āϏāĻŽāĻžāϧāĻžāύ:
$\sin 480^{\circ} \cos 750^{\circ}+\cos \left(-660^{\circ}\right) \sin \left(-870^{\circ}\right)$
$=\sin \left(5 \times 90^{\circ}+30^{\circ}\right) \cos \left(8 \times 90^{\circ}+30^{\circ}\right)+\left\{-\cos \left(7 \times 90^{\circ}+30^{\circ}\right)\right\}\left\{-\sin \left(9 \times 90^{\circ}+60^{\circ}\right)\right\}$
$=\cos 30^{\circ} \cos 30^{\circ}+\left(\sin 30^{\circ}\right)\left(-\cos 60^{\circ}\right)$
$=\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2}-\frac{1}{2} \cdot \frac{1}{2}$
$=\frac{3}{4}-\frac{1}{4}$
$=\frac{1}{2}$
āĻ āĻĨāĻŦāĻž, āϏāϰāĻžāϏāϰāĻŋ Calculator āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰā§āĻ āϏāĻŽāĻžāϧāĻžāύ āĻāϰāĻž āϝāĻžā§:
āĻāĻĻāĻžāĻšāϰāĻŖ 5. āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰ:
(i) sin2 10° + sin2 20° + sin2 30° + âĻ âĻ âĻ + sin2 80°
(ii) cos2 25° + cos2 35° + cos2 45° + cos2 55° + cos2 65°
āϏāĻŽāĻžāϧāĻžāύ:
(i)
sin2 10° + sin2 20° + sin2 30° + âĻ âĻ âĻ + sin2 80°
= sin2 10° + sin2 20° + sin2 30° + sin2 40° + sin2 (90° â 40°) + sin2 (90° â 30°) + sin2 (90° â 20°) + sin2 (90° â 10°)
= sin2 10° + sin2 20° + sin2 30° + sin2 40° + cos2 40° + cos2 30° + cos2 20° + cos2 10°
= (sin2 10° + cos2 10°) + (sin2 20° + cos2 20°) + (sin2 30° + cos2 30°) + (sin2 40° + cos2 40°)
= 1 + 1 + 1 + 1               [âĩ sin2 θ + cos2 θ = 1]
= 4
āĻ āĻĨāĻŦāĻž, āϏāϰāĻžāϏāϰāĻŋ Calculator āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰā§āĻ āϏāĻŽāĻžāϧāĻžāύ āĻāϰāĻž āϝāĻžā§:
(ii)
$\cos ^{2} 25^{\circ}+\cos ^{2} 35^{\circ}+\cos ^{2} 45^{\circ}+\cos ^{2} 55^{\circ}+\cos ^{2} 65^{\circ}$
$=\cos ^{2} 25^{\circ}+\cos ^{2} 35^{\circ}+\cos ^{2} 45^{\circ}+\cos ^{2}\left(90^{\circ}-35^{\circ}\right)+\cos ^{2}\left(90^{\circ}-25^{\circ}\right)$
$=\cos ^{2} 25^{\circ}+\cos ^{2} 35^{\circ}+\cos ^{2} 45^{\circ}+\sin ^{2} 35^{\circ}+\sin ^{2} 25^{\circ}$
$=\left(\sin ^{2} 25^{\circ}+\cos ^{2} 25^{\circ}\right)+\left(\sin ^{2} 35^{\circ}+\cos ^{2} 35^{\circ}\right)+\cos ^{2} 45^{\circ}$
$=1+1+\left(\frac{1}{\sqrt{2}}\right)^{2}$
$=2+\frac{1}{2}$
$=\frac{5}{2}$
āĻ āĻĨāĻŦāĻž, āϏāϰāĻžāϏāϰāĻŋ Calculator āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰā§āĻ āϏāĻŽāĻžāϧāĻžāύ āĻāϰāĻž āϝāĻžā§:
āĻāĻĻāĻžāĻšāϰāĻŖ 6. $\frac{\sin 65^{\circ}-\sin 25^{\circ}}{\sin 65^{\circ}+\sin 25^{\circ}}$ āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤
āϏāĻŽāĻžāϧāĻžāύ:
$\frac{\sin 65^{\circ}-\sin 25^{\circ}}{\sin 65^{\circ}+\sin 25^{\circ}}$
$=\frac{\sin \left(90^{\circ}-25^{\circ}\right)-\sin 25^{\circ}}{\sin \left(90^{\circ}-25^{\circ}\right)+\sin 25^{\circ}}$
$=\frac{\cos 25^{\circ}-\sin 25^{\circ}}{\cos 25^{\circ}+\sin 25^{\circ}}$
$=\frac{\frac{\cos 25^{\circ}-\sin 25^{\circ}}{\cos 25^{\circ}}}{\frac{\cos 25^{\circ}+\sin 25^{\circ}}{\cos 25^{\circ}}}$
$=\frac{1-\tan 25^{\circ}}{1+\tan 25^{\circ}} \quad\left[\frac{\sin \theta}{\cos \theta}=\tan \theta\right]$
$=\frac{\tan 45^{\circ}-\tan 25^{\circ}}{1+\tan 45^{\circ} \tan 25^{\circ}} \quad\left[\tan 45^{\circ}=1\right]$
$=\tan \left(45^{\circ}-25^{\circ}\right) \quad\left[\frac{\tan A-\tan B}{1+\tan A \tan \mathrm{B}}=\tan (A-B)\right]$
$=\tan 20^{\circ}$
āĻāĻĻāĻžāĻšāϰāĻŖ 7. āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰ:
(i) sin 15°
(ii) cos 15°
(iii) tan 15°
(iv) sin 75°
(v) cos 75°
(vi) tan 75°
āϏāĻŽāĻžāϧāĻžāύ:
(i)
sin 15°
= sin (45° â 30°)
= sin 45° cos 30° â cos 45° sin 30°        [sin (A â B) = sin A cos B â cos A sin B]
$=\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}} \cdot \frac{1}{2}$
$=\frac{\sqrt{3}-1}{2 \sqrt{2}}$
(ii)
cos 15°
= cos (45° â 30°)
= cos 45° cos 30° + sin 45° sin 30°       [cos (A â B) = cos A cos B + sin A sin B]
$=\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}} \cdot \frac{1}{2}$
$=\frac{\sqrt{3}+1}{2 \sqrt{2}}$
(iii)
$\tan 15^{\circ}$
$$
\begin{aligned}
&=\frac{\sin 15^{\circ}}{\cos 15^{\circ}} \\
&=\frac{\frac{\sqrt{3}-1}{2 \sqrt{2}}}{\frac{\sqrt{3}+1}{2 \sqrt{2}}} \\
&=\frac{\sqrt{3}-1}{\sqrt{3}+1} \\
&=\frac{(\sqrt{3}-1)^{2}}{(\sqrt{3}+1)(\sqrt{3}-1)} \\
&=\frac{(\sqrt{3})^{2}+(1)^{2}-2 \cdot \sqrt{3} \cdot 1}{(\sqrt{3})^{2}-(1)^{2}} \\
&=\frac{4-2 \sqrt{3}}{2} \\
&=2-\sqrt{3}
\end{aligned}
$$
(iv)
$\begin{aligned}
&\sin 75^{\circ} \\
&=\sin \left(45^{\circ}+30^{\circ}\right) \\
&=\sin 45^{\circ} \cos 30^{\circ}+\cos 45^{\circ} \sin 30^{\circ} \\
&=\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}} \cdot \frac{1}{2} \\
&=\frac{\sqrt{3}+1}{2 \sqrt{2}}
\end{aligned}$
(v)
$\cos 75^{\circ}$
$=\cos \left(45^{\circ}+30^{\circ}\right)$
$=\cos 45^{\circ} \cos 30^{\circ}-\sin 45^{\circ} \sin 30^{\circ}$
$=\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}} \cdot \frac{1}{2}$
$=\frac{\sqrt{3}-1}{2 \sqrt{2}}$
(vi)
$\tan 75^{\circ}$
$=\frac{\sin 75^{\circ}}{\cos 75^{\circ}}$
$=\frac{\frac{\sqrt{3}+1}{2 \sqrt{2}}}{\frac{\sqrt{3}-1}{2 \sqrt{2}}}$
$=\frac{(\sqrt{3}+1)^{2}}{(\sqrt{3}-1)(\sqrt{3}+1)}$
$=\frac{(\sqrt{3})^{2}+(1)^{2}+2 \cdot \sqrt{3} \cdot 1}{(\sqrt{3})^{2}-(1)^{2}}$
$=\frac{4+2 \sqrt{3}}{2}$
$=2+\sqrt{3}$
Â
āĻĸāĻžāĻŦāĻŋāϰ āĻŦāĻŋāĻāϤ āĻŦāĻāϰā§āϰ āĻĒā§āϰāĻļā§āύ
1. āύāĻŋāĻā§āϰ āĻā§āύāĻāĻŋ sin A āĻŦāĻž  cos A āĻāϰ āĻŦāĻšā§āĻĒāĻĻā§āϰā§āĻĒā§ Â sin 3A āĻā§ āĻĒā§āϰāĻāĻžāĻļ āĻāϰā§?
[DU 2001-2002, 2003-2004]
(A) 4 sin3 A â 3 sin AÂ Â Â Â Â (B) 3 sin3 A â 4 sin AÂ Â Â Â Â (C) 3 sin A â 4 sin3 AÂ Â Â Â Â (D) 4 sin3 A â 3 cos A
2. cos 420° cos 390° + sin (â300°) sin (â 330°) āĻāϰ āĻŽāĻžāύ â                                       Â
[DU 2001-2002]
(A) 0Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (B) â 1Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (C) 1Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (D) 
3.  $\frac{2 \tan \theta}{1+\tan ^{2} \theta}=?$                                                                  Â
[DU 2001-2002]
(A) tan 2θ                          (B) 2 sin θ cos θ              (C) $2 \cos ^{2} \frac{\theta}{2}$            (D) cos 2θ
4. āύāĻŋāĻā§āϰ āĻā§āύ āϰāĻžāĻļāĻŋāĻŽāĻžāϞāĻžāĻāĻŋ cos 3A āĻā§ cos A āĻŦāĻž sin A āĻāϰ āĻŦāĻšā§āĻĒāĻĻā§āϰā§āĻĒā§ āĻĒā§āϰāĻāĻžāĻļ āĻāϰ⧠â
[DU 2002-2003]
(A) 3 cos A â 4 cos3 AÂ Â Â (B) 4 cos3 A â 3 cos AÂ Â Â (C) 3 sin A â 4 sin3 AÂ Â Â Â Â (D) 4 sin3 A â 3 sin A
5. sin 65° + cos 65° āϏāĻŽāĻžāύ â
[DU 2002-2003]
(A) $\frac{\sqrt{3}}{2} \cos 40^{\circ}$Â Â Â Â Â Â Â Â Â Â (B)Â $\frac{1}{2} \sin 20^{\circ}$Â Â Â Â Â Â Â Â Â Â (C)Â $\sqrt{2} \cos 20^{\circ}$Â Â Â Â Â Â Â Â Â (D)Â $\frac{\sqrt{3}}{2} \sin 40^{\circ}$
6. tan 75° â tan 30° â tan 75° tan 30° āĻāϰ āĻŽāĻžāύ â
[DU 2003-2004]
(A) 0Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (B) 1Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (C) $\frac{1}{\sqrt{2}}$Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (D)Â $\frac{1}{\sqrt{3}}$
7. cos 675° + sin (â 1395°) āϏāĻŽāĻžāύ â
[DU 2003-2004]
(A) $\frac{1}{2}$Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (B) $\frac{1}{\sqrt{2}}$Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (C) $-\sqrt{2}$Â Â Â Â Â Â Â Â Â Â Â Â Â Â (D)Â $\sqrt{2}$
8. $\frac{\sin 75^{\circ}+\sin 15^{\circ}}{\sin 75^{\circ}-\sin 15^{\circ}}$ āϏāĻŽāĻžāύ â
[DU 2004-2005, 2011-2012]
(A) $\sqrt{3}$Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (B) $\sqrt{2}$Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (C) $\frac{1}{\sqrt{2}}$Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (D)Â $\frac{1}{\sqrt{3}}$
9. sin2 10° + sin2 20° + âĻ âĻ âĻ + sin2 80° + sin2 90° āĻāϰ āĻŽāĻžāύ â
[DU 2004-2005]
(A) 5Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (B) 6Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (C) 4Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (D) 3
10. sin 780° cos 390° â sin 330° cos (â 300°) āĻāϰ āĻŽāĻžāύ â
[DU 2005-2006]
(A) 0Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (B) â 1Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (C) 1Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (D)Â $\frac{1}{2}$
11. cos2 30° + cos2 60° + âĻ âĻ âĻ + cos2 180° āĻāϰ āĻŽāĻžāύ â
[DU 2006-2007]
(A) 0Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (B) 2Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (C) 3Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (D) 4
12. cos 75° āĻāϰ āϏāĻ āĻŋāĻ āĻŽāĻžāύ â
[DU 2007-2008]
(A) $\frac{\sqrt{3}+1}{2 \sqrt{2}}$Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (B) $\frac{\sqrt{3}}{2 \sqrt{2}}$Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (C) $-\frac{\sqrt{3}}{2 \sqrt{2}}$Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (D)Â $\frac{\sqrt{3}-1}{2 \sqrt{2}}$
13. āϝāĻĻāĻŋ $\cos A=\frac{4}{5}$ āĻšā§, āϤāĻŦā§ $\frac{1+\tan ^{2} \mathrm{~A}}{1-\tan ^{2} \mathrm{~A}}$ āĻāϰ āĻŽāĻžāύ â
[DU 2007-2008]
(A) $-\frac{25}{7}$
(B) $\frac{7}{5}$
(C) $\frac{25}{7}$
(D) $-\frac{7}{5}$
14. cos2 0° + cos2 10° + cos2 20° + âĻ âĻ âĻ + cos2 90° āĻāϰ āĻŽāĻžāύ â
[DU 2008-2009]
(A) 6Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (B) 3Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (C) 5Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (D) 4
15. cot A â tan A āϏāĻŽāĻžāύ â
[DU 2008-2009]
(A) 2 tan 2AÂ Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (B) 2 cot 2AÂ Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (C) 2 cos2 AÂ Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (D) 2 sin2 A
16. tan θ =
 āĻāĻŦāĻ Î¸ āϏā§āĻā§āώā§āĻŽāĻā§āĻŖ āĻšāϞ⧠sin θ + sec (âθ) āĻāϰ āĻŽāĻžāύ â
[DU 2008-2009]
(A) $\frac{21}{156}$
(B) $\frac{229}{156}$
(C) $\frac{219}{156}$
(D) $\frac{17}{13}$
17. cos 198° + sin 432° + tan 168° + tan 12° āĻāϰ āĻŽāĻžāύ â
[DU 2009-2010]
(A) 0Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (B) â 1Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (C) 1Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (D) 
18. āϝāĻĻāĻŋ \cos \theta=\frac{12}{13} āĻšā§, āϤāĻžāĻšāϞ⧠tan θ āĻāϰ āĻŽāĻžāύ â
[DU 2009-2010]
(A) $\pm \frac{5}{12}$
(B) $\frac{25}{144}$
(C) $\frac{13}{12}$
(D) $\pm \frac{13}{12}$
19. āϝāĻĻāĻŋ  A + B + C = Ī āĻšā§, āϤāĻŦā§ $\sin ^{2} \frac{\mathrm{A}}{2}+\sin ^{2} \frac{\mathrm{B}}{2}+\sin ^{2} \frac{\mathrm{C}}{2}$ āϏāĻŽāĻžāύ â
[DU 2010-2011]
(A) $1-2 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$
(B) $1+2 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$
(C) $1-\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$
(D) $1+\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$
āϏāĻŽāĻžāϧāĻžāύ
1.
āĻāĻŽāϰāĻž āĻāĻžāύāĻŋ, sin 3A = 3 sin A â 4 sin3 A                               [āĻā§āĻŖāĻŋāϤāĻ āĻā§āĻŖā§āϰ āϤā§āϰāĻŋāĻā§āĻŖāĻŽāĻŋāϤāĻŋāĻ āĻ āύā§āĻĒāĻžāϤ]
â´ Answer: (C)
2.
[āĻāĻĻāĻžāĻšāϰāĻŖ 4. āĻĻā§āϰāώā§āĻāĻŦā§āϝ]
āϏāϰāĻžāϏāϰāĻŋ Calculator āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰ⧠āĻĒāĻžāĻ:
â´ Answer: (D)
3.
āĻāĻŽāϰāĻž āĻāĻžāύāĻŋ, \sin 2 \theta=2 \sin \theta \cos \theta=\frac{2 \tan \theta}{1+\tan ^{2} \theta}  [āĻā§āĻŖāĻŋāϤāĻ āĻā§āĻŖā§āϰ āϤā§āϰāĻŋāĻā§āĻŖāĻŽāĻŋāϤāĻŋāĻ āĻ āύā§āĻĒāĻžāϤ]
â´ Answer: (B)
4.
āĻāĻŽāϰāĻž āĻāĻžāύāĻŋ, cos 3A = 4 cos3 A â 3 cos A            [āĻā§āĻŖāĻŋāϤāĻ āĻā§āĻŖā§āϰ āϤā§āϰāĻŋāĻā§āĻŖāĻŽāĻŋāϤāĻŋāĻ āĻ āύā§āĻĒāĻžāϤ]
â´ Answer: (B)
5.
$\begin{aligned}
&\sin 65^{\circ}+\cos 65^{\circ} \\
&=\sin 65^{\circ}+\cos \left(90^{\circ}-25^{\circ}\right) \\
&=\sin 65^{\circ}+\sin 25^{\circ} \\
&=2 \sin \frac{65^{\circ}+25^{\circ}}{2} \cos \frac{65^{\circ}-25^{\circ}}{2} \\
&=2 \sin 45^{\circ} \cos 20^{\circ} \\
&=2 \cdot \frac{1}{\sqrt{2}} \cos 20^{\circ} \\
&=\sqrt{2} \cos 20^{\circ}
\end{aligned}$
āĻ āĻĨāĻŦāĻž, āϏāϰāĻžāϏāϰāĻŋ Calculator āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰ⧠āĻĒā§āϰāĻĻāϤā§āϤ āϰāĻžāĻļāĻŋāϰ āϏāĻžāĻĨā§ āĻĒā§āϰāĻļā§āύā§āϰ Option āĻā§āϞā§āϰ āĻŽāĻžāύ āĻŽāĻŋāϞāĻŋā§ā§ āϏāĻ āĻŋāĻ āĻāϤā§āϤāϰ āύāĻŋāϰā§āĻŦāĻžāĻāύ āĻāϰāĻž āϝāĻžā§āĨ¤Â     [āĻāĻĻāĻžāĻšāϰāĻŖ 4. āĻĻā§āϰāώā§āĻāĻŦā§āϝ]
āĻāĻā§āώā§āϤā§āϰā§,
$\sin 65^{\circ}+\cos 65^{\circ}=1.3289 \ldots$
$\frac{\sqrt{3}}{2} \cos 40^{\circ}=0.9382 \ldots$
$\frac{1}{2} \sin 20^{\circ}=0.1710 \ldots$
$\sqrt{2} \cos 20^{\circ}=1.3289 \ldots$
â´ Answer: (C)
6.
āϏāϰāĻžāϏāϰāĻŋ Calculator āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰ⧠āϏāĻŽāĻžāϧāĻžāύ āĻāϰāĻž āϝāĻžā§āĨ¤
tan 75° â tan 30° â tan 75° tan 30° = 1                [āĻāĻĻāĻžāĻšāϰāĻŖ 4. āĻĻā§āϰāώā§āĻāĻŦā§āϝ]
â´ Answer: (B)
7.
āϏāϰāĻžāϏāϰāĻŋ Calculator āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰ⧠āϏāĻŽāĻžāϧāĻžāύ āĻāϰāĻž āϝāĻžā§āĨ¤
$\cos 675^{\circ}+\sin \left(-1395^{\circ}\right)=1.4142 \ldots=\sqrt{2}$     [āĻāĻĻāĻžāĻšāϰāĻŖ 1. āĻĻā§āϰāώā§āĻāĻŦā§āϝ]
â´ Answer: (D)
8.
[āĻāĻĻāĻžāĻšāϰāĻŖ 6. āĻĻā§āϰāώā§āĻāĻŦā§āϝ]
āĻ āĻĨāĻŦāĻž, āϏāϰāĻžāϏāϰāĻŋ Calculator āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰā§āĻ āϏāĻŽāĻžāϧāĻžāύ āĻāϰāĻž āϝāĻžā§āĨ¤
$\frac{\sin 75^{\circ}+\sin 15^{\circ}}{\sin 75^{\circ}-\sin 15^{\circ}}=1.732 \ldots=\sqrt{3}$
â´ Answer: (A)
9.
[āĻāĻĻāĻžāĻšāϰāĻŖ 5. āĻĻā§āϰāώā§āĻāĻŦā§āϝ]
āĻ āĻĨāĻŦāĻž, āϏāϰāĻžāϏāϰāĻŋ Calculator āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰā§āĻ āϏāĻŽāĻžāϧāĻžāύ āĻāϰāĻž āϝāĻžā§āĨ¤
sin2 10° + sin2 20° + âĻ âĻ âĻ + sin2 80° + sin2 90° = 5
â´ Answer: (A)
10.
[āĻāĻĻāĻžāĻšāϰāĻŖ 4. āĻĻā§āϰāώā§āĻāĻŦā§āϝ]
āĻ āĻĨāĻŦāĻž, āϏāϰāĻžāϏāϰāĻŋ Calculator āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰā§āĻ āϏāĻŽāĻžāϧāĻžāύ āĻāϰāĻž āϝāĻžā§āĨ¤
sin 780° cos 390° â sin 330° cos (â 300°) = 1
â´ Answer: (C)
11.
[āĻāĻĻāĻžāĻšāϰāĻŖ 5. āĻĻā§āϰāώā§āĻāĻŦā§āϝ]
āĻ āĻĨāĻŦāĻž, āϏāϰāĻžāϏāϰāĻŋ Calculator āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰā§āĻ āϏāĻŽāĻžāϧāĻžāύ āĻāϰāĻž āϝāĻžā§āĨ¤
cos2 30° + cos2 60° + âĻ âĻ âĻ + cos2 180° = 3
â´ Answer: (C)
12.
[āĻāĻĻāĻžāĻšāϰāĻŖ 7. āĻĻā§āϰāώā§āĻāĻŦā§āϝ]
$\cos 75^{\circ}=\frac{\sqrt{3}-1}{2 \sqrt{2}}$
â´ Answer: (D)
13.
[āĻāĻĻāĻžāĻšāϰāĻŖ 2 āĻĻā§āϰāώā§āĻāĻŦā§āϝ]
$\therefore \tan A=\pm \frac{3}{4}$
$\therefore \frac{1+\tan ^{2} \mathrm{~A}}{1-\tan ^{2} \mathrm{~A}}=\frac{1+\left(\frac{3}{4}\right)^{2}}{1-\left(\frac{3}{4}\right)^{2}}=\frac{1+\frac{9}{16}}{1-\frac{9}{16}}=\frac{25}{7}$
â´ Answer: (C)
14.
[āĻāĻĻāĻžāĻšāϰāĻŖ 5. āĻĻā§āϰāώā§āĻāĻŦā§āϝ]
āĻ āĻĨāĻŦāĻž, āϏāϰāĻžāϏāϰāĻŋ Calculator āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰā§āĻ āϏāĻŽāĻžāϧāĻžāύ āĻāϰāĻž āϝāĻžā§āĨ¤
cos2 0° + cos2 10° + cos2 20° + âĻ âĻ âĻ + cos2 90° = 5
â´ Answer: (C)
15.
$\cot A-\tan A$
$=\frac{\cos A}{\sin A}-\frac{\sin A}{\cos A}$
$=\frac{\cos ^{2} A-\sin ^{2} A}{\sin A \cos A}$
$=\frac{\cos 2 A}{\sin A \cos A} \quad\left[\cos 2 A=\cos ^{2} A-\sin ^{2} A\right]$
$=\frac{2 \cos 2 A}{2 \sin A \cos A}$
$=\frac{2 \cos 2 \mathrm{~A}}{\sin 2 \mathrm{~A}} \quad[\sin 2 A=2 \sin A \cos A]$
$=2 \cot 2 A$
â´ Answer: (B)
16.
[āĻāĻĻāĻžāĻšāϰāĻŖ 2 āĻĻā§āϰāώā§āĻāĻŦā§āϝ]
âĩ θ āϏā§āĻā§āώā§āĻŽāĻā§āĻŖ â´Â $\sin \theta=\frac{5}{13}$ āĻāĻŦāĻ $\sec (-\theta)=\sec \theta=\frac{13}{12}$
â´Â $\sin \theta+\sec (-\theta)=\frac{5}{13}+\frac{13}{12}=\frac{229}{156}$
â´ Answer: (B)
17.
āϏāϰāĻžāϏāϰāĻŋ Calculator āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰ⧠āϏāĻŽāĻžāϧāĻžāύ āĻāϰāĻž āϝāĻžā§āĨ¤
cos 198° + sin 432° + tan 168° + tan 12° = 0                  [āĻāĻĻāĻžāĻšāϰāĻŖ 4. āĻĻā§āϰāώā§āĻāĻŦā§āϝ]
â´ Answer: (A)
18.
[āĻāĻĻāĻžāĻšāϰāĻŖ 2 āĻĻā§āϰāώā§āĻāĻŦā§āϝ]
âĩ θ āϏāĻŽā§āĻĒāϰā§āĻā§ āύāĻŋāϰā§āĻĻāĻŋāώā§āĻ āĻāĻŋāĻā§ āĻŦāϞāĻž āύā§āĻ āĻāĻŦāĻ cos θ āϧāύāĻžāϤā§āĻŽāĻ āϏā§āϤāϰāĻžāĻ Î¸ āĻāϰ āĻĒā§āϰāĻžāύā§āϤāĻŋāĻ āĻŦāĻžāĻšā§āϰ āĻ āĻŦāϏā§āĻĨāĻžāύ ā§§āĻŽ āĻ āĻĨāĻŦāĻž ā§Ēāϰā§āĻĨ āĻāϤā§āϰā§āĻāĻžāĻā§āϰ āϝā§āĻā§āύā§āĻāĻŋāϤ⧠āĻšāϤ⧠āĻĒāĻžāϰā§āĨ¤
â´Â $\tan \theta=\pm \frac{5}{12}$
â´ Answer: (A)
19.
$\sin ^{2} \frac{A}{2}+\sin ^{2} \frac{B}{2}+\sin ^{2} \frac{C}{2}$
$=\frac{1}{2}\left(2 \sin ^{2} \frac{A}{2}+2 \sin ^{2} \frac{B}{2}\right)+\sin ^{2} \frac{C}{2}$
$=\frac{1}{2}(1-\cos A+1-\cos B)+\sin ^{2} \frac{C}{2} \quad\left[\cos \theta=1-2 \sin ^{2} \frac{\theta}{2} \Rightarrow 2 \sin ^{2} \frac{\theta}{2}=1-\cos \theta\right]$
$=1-\frac{1}{2}(\cos A+\cos B)+\sin ^{2} \frac{C}{2}$
$=1-\frac{1}{2} \times 2 \cos \frac{A+B}{2} \cos \frac{A-B}{2}+\sin ^{2} \frac{C}{2} \quad\left[\cos C+\cos D=2 \cos \frac{C+D}{2} \cos \frac{C-D}{2}\right]$
$=1-\cos \left(\frac{\pi}{2}-\frac{C}{2}\right) \cos \frac{A-B}{2}+\sin ^{2} \frac{C}{2} \quad\left[A+B+C=\pi \Rightarrow \frac{A+B}{2}=\frac{\pi}{2}-\frac{C}{2}\right]$
$=1-\sin \frac{C}{2} \cos \frac{A-B}{2}+\sin ^{2} \frac{C}{2}$
$=1-\sin \frac{C}{2} \cos \frac{A-B}{2}+\sin ^{2} \frac{C}{2}$
$=1-\sin \frac{C}{2}\left[\cos \frac{A-B}{2}-\sin \frac{C}{2}\right]$
$=1-\sin \frac{C}{2}\left[\cos \frac{A-B}{2}-\sin \left(\frac{\pi}{2}-\frac{A+B}{2}\right)\right]$
$=1-\sin \frac{C}{2}\left[\cos \frac{A-B}{2}-\cos \frac{A+B}{2}\right]$
$=1-\sin \frac{C}{2} \times 2 \sin \frac{A}{2} \sin \frac{B}{2} \quad[2 \sin A \sin B=\cos (A-B)-\cos (A+B)]$
$=1-2 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$
āĻ āĻĨāĻŦāĻž,
A = B = C = 60° āϧāϰāϞ⧠Calculator āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰ⧠āĻĒāĻžāĻ,
$\sin ^{2} \frac{A}{2}+\sin ^{2} \frac{B}{2}+\sin ^{2} \frac{C}{2}=0.75$
$1-2 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}=0.75$
â´ Answer: (A)
Â