āϏāĻžāϧāĻžāϰāĻŖ āϧāĻžāϰāĻŖāĻžÂ 

 

āĻŦāĻšā§āĻĒāĻĻā§€ āĻ“ āϤāĻžāϰ āϘāĻžāϤ (Polynomial and its degree) : āĻŦāĻšā§āĻĒāĻĻā§€ āĻāĻ• āϧāϰāύ⧇āϰ āĻŦā§€āϜāĻ—āĻžāĻŖāĻŋāϤāĻŋāĻ• āϰāĻžāĻļāĻŋ (Expression) āĨ¤ āĻāϤ⧇ āĻāĻ• āĻŦāĻž āĻāĻ•āĻžāϧāĻŋāĻ• āĻĒāĻĻ (element) āĻĨāĻžāĻ•āϤ⧇ āĻĒāĻžāϰ⧇ āĨ¤ āĻāĻ• āĻŦāĻž āĻāĻ•āĻžāϧāĻŋāĻ• āϚāϞāϕ⧇āϰ (variable) āϕ⧇āĻŦāϞāĻŽāĻžāĻ¤ā§āϰ āϧāύāĻžāĻ¤ā§āĻŽāĻ• āĻĒā§‚āĻ°ā§āĻŖāϏāĻžāĻ‚āĻ–ā§āϝāĻŋāĻ• āϘāĻžāϤ āĻ“ āϕ⧋āύ āĻ§ā§āϰ⧁āĻŦāϕ⧇āϰ (constant) āϗ⧁āĻŖāĻĢāϞ āĻšāϞ āĻŦāĻšā§āĻĒāĻĻā§€āϰ āĻŦāĻŋāĻ­āĻŋāĻ¨ā§āύ āĻĒāĻĻ āĨ¤ āĻŦāĻšā§āĻĒāĻĻā§€āϰ āĻĒāĻĻāϗ⧁āϞ⧋āϰ āϏāĻ°ā§āĻŦā§‹āĻšā§āϚ āϘāĻžāϤāϕ⧇ āĻŦāĻšā§āĻĒāĻĻā§€ā§Ÿ āϘāĻžāϤ (Degree) āĻŦāϞ⧇ āĨ¤

āĻāĻ• āϚāϞāϕ⧇āϰ āĻŦāĻšā§āĻĒāĻĻā§€ : āĻāϰ āĻĒā§āϰāϤāĻŋ āĻĒāĻĻ⧇ āĻļ⧁āϧ⧁āĻŽāĻžāĻ¤ā§āϰ āĻāĻ•āϟāĻŋ āϚāϞāϕ⧇āϰ āĻŦāĻŋāĻ­āĻŋāĻ¨ā§āύ āĻĒā§‚āĻ°ā§āĻŖ āϏāĻžāĻ‚āĻ–ā§āϝāĻŋāĻ• āϘāĻžāϤ āĻ“ āĻ§ā§āϰ⧁āĻŦāĻ• āĻĨāĻžāϕ⧇ āĨ¤ āϝ⧇āĻŽāύ :

a0xn+a1xn-1+a2xn-2+ ......+an āĻāĻ•āϟāĻŋ āĻāĻ• āϚāϞāϕ⧇āϰ āĻŦāĻšā§āĻĒāĻĻā§€ āϝ⧇āĻ–āĻžāύ⧇ x āϚāϞāĻ• āĨ¤ a 0, a1, a2, ...... an ∈ R āĻšāϞ āĻ§ā§āϰ⧁āĻŦāĻ• āϝ⧇āĻ–āĻžāύ⧇ a0 ≠ 0 āĨ¤ n āĻšāϞ x āĻāϰ āϏāĻ°ā§āĻŦāĻžāϧāĻŋāĻ• āϘāĻžāϤ āĨ¤ āϞāĻ•ā§āώāĻŖā§€ā§Ÿ, x āĻāϰ āϘāĻžāϤ āĻ•āĻ–āύāĻ“ āĻ‹āĻŖāĻžāĻ¤ā§āĻŽāĻ• āĻšāϤ⧇ āĻĒāĻžāϰāĻŦ⧇ āύāĻž āĨ¤ a0 āϕ⧇ āĻŽā§āĻ–ā§āϝ āϏāĻšāĻ— āĻŦāϞāĻž āĻšā§Ÿ āĨ¤ āĻāĻ• āϚāϞāĻ• x-āĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āĻāϰ⧂āĻĒ āĻŦāĻšā§āĻĒāĻĻā§€ āϰāĻžāĻļāĻŋāϕ⧇ f(x) āĻĻā§āĻŦāĻžāϰāĻžāĻ“ āĻĒā§āϰāĻ•āĻžāĻļ āĻ•āϰāĻž āĻšā§Ÿ āĨ¤

āĻŦāĻšā§āĻĒāĻĻā§€ āϏāĻŽā§€āĻ•āϰāĻŖ (Polynomial Equation) : a0xn+a1xn-1+a2xn-2+ ......+a n = 0 āφāĻ•āĻžāϰ⧇āϰ āϏāĻŽā§€āĻ•āϰāĻŖāϕ⧇ āĻŦāĻšā§āĻĒāĻĻā§€ āϏāĻŽā§€āĻ•āϰāĻŖ āĻŦāϞ⧇ āĨ¤

x āĻāϰ āϝ⧇ āĻŽāĻžāύāϗ⧁āϞ⧋āϰ āϜāĻ¨ā§āϝ āĻŦāĻšā§āĻĒāĻĻā§€ āϏāĻŽā§€āĻ•āϰāĻŖāϟāĻŋ āϏāĻŋāĻĻā§āϧ āĻšā§Ÿ, āĻ…āĻ°ā§āĻĨāĻžā§Ž āĻŦāĻšā§āĻĒāĻĻā§€ āϰāĻžāĻļāĻŋāϟāĻŋāϰ āĻŽāĻžāύ āĻļā§‚āĻ¨ā§āϝ āĻšā§Ÿ, āϐ āĻŽāĻžāύāϗ⧁āϞ⧋āϕ⧇ āĻŦāĻšā§āĻĒāĻĻā§€ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞ (Roots) āĻŦāϞāĻž āĻšā§Ÿ āĨ¤

n = 1,2,3 āĻāϰ āϜāĻ¨ā§āϝ āĻŦāĻšā§āĻĒāĻĻā§€ āϏāĻŽā§€āĻ•āϰāĻŖāϟāĻŋāϕ⧇ āϝāĻĨāĻžāĻ•ā§āϰāĻŽā§‡ āϏāϰāϞ āϏāĻŽā§€āĻ•āϰāĻŖ (Linear equation), āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāĻŖ (quadratic equation), āĻ¤ā§āϰāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāĻŖ (cubic equation) āĻŦāϞāĻž āĻšā§Ÿ āĨ¤

āĻŦāĻšā§āĻĒāĻĻā§€ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āωāĻĒāĻĒāĻžāĻĻā§āϝ (Theorems of polynomial equations) :

  i. āĻŦā§€āϜāĻ—āĻŖāĻŋāϤ⧇āϰ āĻŽā§ŒāϞāĻŋāĻ• āωāĻĒāĻĒāĻžāĻĻā§āϝ (Fundamental theorem of algebra) : āĻĒā§āϰāϤāĻŋāϟāĻŋ āĻŦāĻšā§āĻĒāĻĻā§€ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻ…āĻ¨ā§āϤāϤ āĻāĻ•āϟāĻŋ āĻŽā§‚āϞ (āĻŦāĻžāĻ¸ā§āϤāĻŦ āĻ•āĻŋāĻ‚āĻŦāĻž āϜāϟāĻŋāϞ) āĻĨāĻžāϕ⧇ āĨ¤

  ii. n āϘāĻžāϤ āĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āĻŦāĻšā§āĻĒāĻĻā§€ āϏāĻŽā§€āĻ•āϰāϪ⧇ n āϏāĻ‚āĻ–ā§āϝāĻ• āĻŽā§‚āϞ āφāϛ⧇ (āĻŦāĻžāĻ¸ā§āϤāĻŦ āĻ•āĻŋāĻ‚āĻŦāĻž āϜāϟāĻŋāϞ) āĨ¤ āϤāĻŦ⧇ āϏāĻŦ āĻŽā§‚āϞāϗ⧁āϞ⧋ āĻ­āĻŋāĻ¨ā§āύ āύāĻžāĻ“ āĻšāϤ⧇ āĻĒāĻžāϰ⧇ āĨ¤

  iii. āĻ­āĻžāĻ—āĻļ⧇āώ āωāĻĒāĻĒāĻžāĻĻā§āϝ (Remainder theorem) : āϝāĻĻāĻŋ āϕ⧋āύ āĻŦāĻšā§āĻĒāĻĻā§€ f(x) āϕ⧇ x-a āĻĻā§āĻŦāĻžāϰāĻž āĻ­āĻžāĻ— āĻ•āϰāĻž āĻšā§Ÿ, āϤāĻŦ⧇ āĻ­āĻžāĻ—āĻļ⧇āώ āĻšāĻŦ⧇ f(a) āĨ¤

  iv. āĻ‰ā§ŽāĻĒāĻžāĻĻāĻ• āωāĻĒāĻĒāĻžāĻĻā§āϝ (Factor theorem) : āϝāĻĻāĻŋ a, āĻŦāĻšā§āĻĒāĻĻā§€ āϏāĻŽā§€āĻ•āϰāĻŖ f(x) āĻāϰ āĻāĻ•āϟāĻŋ āĻŽā§‚āϞ āĻšā§Ÿ āϤāĻŦ⧇ (x-a) āĻŦāĻšā§āĻĒāĻĻā§€ f(x) āĻāϰ āĻāĻ•āϟāĻŋ āĻ‰ā§ŽāĻĒāĻžāĻĻāĻ• āĻšāĻŦ⧇ āĨ¤

  v. āĻ…āύ⧁āĻŦāĻ¨ā§āϧ⧀ āĻŽā§‚āϞ āωāĻĒāĻĒāĻžāĻĻā§āϝ (Conjugate pairs theorem) : a+ib āϕ⧋āύ āĻŦāĻšā§āĻĒāĻĻā§€ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āϜāϟāĻŋāϞ āĻŽā§‚āϞ āĻšāϞ⧇ āĻāϰ āĻ…āύ⧁āĻŦāĻ¨ā§āϧ⧀ a-ib āĻ“ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞ āĻšāĻŦ⧇ āĨ¤ āĻāĻŦāĻ‚ a+√b āĻāĻ•āϟāĻŋ āĻŽā§‚āϞ āĻšāϞ⧇ (āϝ⧇āĻ–āĻžāύ⧇ √b āĻ…āĻŽā§‚āϞāĻĻ), āĻāϰ āĻ…āύ⧁āĻŦāĻ¨ā§āϧ⧀ a-√b āĻ“ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻāĻ•āϟāĻŋ āĻŽā§‚āϞ āĻšāĻŦ⧇ āĨ¤

¡ āĻŦāĻšā§āĻĒāĻĻā§€āϰ āĻŽā§‚āϞ āϏāĻšāĻ— āϏāĻŽā§āĻĒāĻ°ā§āĻ• : āϝāĻĻāĻŋ a,b,c,d, ...... k āϕ⧋āύ āĻŦāĻšā§āĻĒāĻĻā§€ āϏāĻŽā§€āĻ•āϰāĻŖ p0xn+p1xn-1+p2x n-2+ ...... +pn āĻāϰ āĻŽā§‚āϞ āĻšā§Ÿ āϤāĻŦ⧇,

  i. = a+b+c+ ...... + k = - p1/p0

  ii. = ab+bc+cd+ ...... = P2/P0

  iii. a×b×c×d×......×k = (-1)n (pn/p0)

āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāĻŖ (Quadratic equation) : āĻŦāĻšā§āĻĒāĻĻā§€ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āϘāĻžāϤ 2 āĻšāϞ⧇ āϤāĻžāϕ⧇ āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāĻŖ āĻŦāϞ⧇ āĨ¤ āĻāĻ• āϚāϞāĻ•āĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āφāĻĻāĻ°ā§āĻļ āϰ⧂āĻĒ-

ax2+bx+c = 0; āϝ⧇āĻ–āĻžāύ⧇ a≠0; a,b,c āĻŽā§‚āϞāĻĻ āϏāĻ‚āĻ–ā§āϝāĻž

āωāĻ•ā§āϤ āϏāĻŽā§€āĻ•āϰāĻŖ āϏāĻŽāĻžāϧāĻžāύ āĻ•āϰāϞ⧇ x āĻāϰ āĻĻ⧁āχāϟāĻŋ āĻŽāĻžāύ āĻĒāĻžāĻ“ā§ŸāĻž āϝāĻžāĻŦ⧇ āĻ…āĻ°ā§āĻĨāĻžā§Ž āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻĻ⧁āχāϟāĻŋ āĻŽā§‚āϞ āĻšāĻŦ⧇-

$\frac{-\mathrm{b}+\sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$ āĻāĻŦāĻ‚Â $\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}$

¡ āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞ-āϏāĻšāĻ— āϏāĻŽā§āĻĒāĻ°ā§āĻ• : ax2+bx+c = 0 āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞ āĻĻ⧁āχāϟāĻŋ Îą āĻāĻŦāĻ‚ β (Îą>β) āĻšāϞ⧇,

  i. $\sum \alpha=\alpha+\beta=-\mathrm{b} / \mathrm{a}$ = - x āĻāϰāϏāĻšāĻ— /  x 2āĻāϰāϏāĻšāĻ—

  ii. ιβ = c/a = āĻ§ā§āϰ⧁āĻŦāĻ•āĻĒāĻĻ / x 2āĻāϰāϏāĻšāĻ—

¡ āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞ⧇āϰ āĻĒā§āϰāĻ•ā§ƒāϤāĻŋ (Nature of the roots) : āφāĻŽāϰāĻž āϜāĻžāύāĻŋ, ax 2+bx+c = 0 āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞ, $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ āĨ¤ āĻāĻ–āĻžāύ⧇, (b2 -4ac) āĻāϰ āĻŽāĻžāύ āĻĒāĻ°ā§āϝāĻžāϞ⧋āϚāύāĻž āĻ•āϰāϞ⧇āχ āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞāĻĻā§āĻŦā§Ÿā§‡āϰ āĻĒā§āϰāĻ•ā§ƒāϤāĻŋ āϜāĻžāύāĻž āϝāĻžā§Ÿ āĨ¤ āĻāϜāĻ¨ā§āϝ (b2-4ac) āϕ⧇ āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āύāĻŋāĻļā§āϚāĻžā§ŸāĻ• āĻŦāĻž āύāĻŋāϰ⧂āĻĒāĻ• (Discriminant) āĻŦāϞāĻž āĻšā§Ÿ āĨ¤

  i. āϝāĻĻāĻŋ b2-4ac=0 ⇒ b2=4ac āĻšā§Ÿ āϤāĻŦ⧇ āĻŽā§‚āϞ āĻĻ⧁āχāϟāĻŋ āĻšāĻŦ⧇ –b/2a āĻāĻŦāĻ‚ –b/2a āĨ¤ āĻ…āĻ°ā§āĻĨāĻžā§Ž āĻŽā§‚āϞ āĻĻ⧁āχāϟāĻŋ āĻŦāĻžāĻ¸ā§āϤāĻŦ, āĻŽā§‚āϞāĻĻ āĻ“ āϏāĻŽāĻžāύ āĻšāĻŦ⧇ āĨ¤

  ii. b2-4ac>0 ⇒ b2>4ac āĻšāϞ⧇ āĻŽā§‚āϞāĻĻā§āĻŦ⧟ āĻŦāĻžāĻ¸ā§āϤāĻŦ āĻ“ āĻ…āϏāĻŽāĻžāύ āĻšāĻŦ⧇ āĨ¤

  iii. b2-4ac<0 ⇒ b2<4ac āĻšāϞ⧇ āĻŽā§‚āϞāĻĻā§āĻŦ⧟ āĻ…āύ⧁āĻŦāĻ¨ā§āϧ⧀ āϜāϟāĻŋāϞ āϏāĻ‚āĻ–ā§āϝāĻž āĻšāĻŦ⧇ āĨ¤

  iv. (b2-4ac) āĻĒā§‚āĻ°ā§āĻŖāĻŦāĻ°ā§āĻ— āĻšāϞ⧇ āĻŽā§‚āϞāĻĻā§āĻŦ⧟ āĻŦāĻžāĻ¸ā§āϤāĻŦ, āĻŽā§‚āϞāĻĻ āĻ“ āĻ…āϏāĻŽāĻžāύ āĻšāĻŦ⧇ āĨ¤

  v. c = 0 āĻšāϞ⧇ āĻāĻ•āϟāĻŋ āĻŽā§‚āϞ 0 āĻšāĻŦ⧇ āĨ¤

  vi. b = 0 āĻšāϞ⧇ āĻŽā§‚āϞ āĻĻ⧁āχāϟāĻŋ āĻšāĻŦ⧇ √(-c/a) āĻāĻŦāĻ‚ -√(-c/a) āĻ…āĻ°ā§āĻĨāĻžā§Ž āĻŽā§‚āϞ āĻĻ⧁āχāϟāĻŋāϰ āĻŽāĻžāύ āϏāĻŽāĻžāύ āĻ•āĻŋāĻ¨ā§āϤ⧁ āĻŦāĻŋāĻĒāϰ⧀āϤ āϚāĻŋāĻšā§āύāĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āĻšāĻŦ⧇ āĨ¤ āϞāĻ•ā§āώāĻŖā§€ā§Ÿ, āĻāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ a āĻ“ c āĻāĻ•āχ āϚāĻŋāĻšā§āύāϝ⧁āĻ•ā§āϤ āĻšāϞ⧇ āĻŽā§‚āϞāĻĻā§āĻŦ⧟ āϜāϟāĻŋāĻ˛Â    āĻāĻŦāĻ‚ āĻŦāĻŋāĻĒāϰ⧀āϤ āϚāĻŋāĻšā§āύāϝ⧁āĻ•ā§āϤ āĻšāϞ⧇ āĻŽā§‚āϞāĻĻā§āĻŦ⧟ āĻŦāĻžāĻ¸ā§āϤāĻŦ āĻšāĻŦ⧇ āĨ¤

¡ āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āϏāĻžāϧāĻžāϰāĻŖ āĻŽā§‚āϞ āĻĨāĻžāĻ•āĻžāϰ āĻļāĻ°ā§āϤ : a1x2+b1x+c1=0 āĻ“ a2x2+b2x+c 2=0 āϏāĻŽā§€āĻ•āϰāĻŖāĻĻā§āĻŦā§Ÿā§‡āϰ-

  i. āĻāĻ•āϟāĻŋ āĻŽā§‚āϞ āϏāĻžāϧāĻžāϰāĻŖ āĻšāĻŦ⧇ āϝāĻĻāĻŋ (a1b2-a2b1)(b1c2-b2c1) = (c 1a2-c2a1)2 āĻšā§Ÿ āĨ¤

  ii. āωāϭ⧟ āĻŽā§‚āϞāχ āϏāĻžāϧāĻžāϰāĻŖ āĻšāĻŦ⧇ āϝāĻĻāĻŋ a1/a2 = b1/b 2 = c1/c2 āĻšā§Ÿ āĨ¤

¡ āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāĻŖ āĻ—āĻ āύ : āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻĻ⧁āχāϟāĻŋ āĻŽā§‚āϞ āĻĻā§‡ā§ŸāĻž āĻĨāĻžāĻ•āϞ⧇ āϤāĻž āĻĨ⧇āϕ⧇ āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāĻŖāϟāĻŋ āĻ—āĻ āύ āĻ•āϰāĻž āϝāĻžā§Ÿ āĨ¤ āϏāĻŽā§€āĻ•āϰāĻŖāϟāĻŋ āĻšāĻŦ⧇-

  x2 - (āĻŽā§‚āϞāĻĻā§āĻŦā§Ÿā§‡āϰ āϝ⧋āĻ—āĻĢāϞ)x + (āĻŽā§‚āϞāĻĻā§āĻŦā§Ÿā§‡āϰ āϗ⧁āĻŖāĻĢāϞ) = 0 

  āĻ…āĻ°ā§āĻĨāĻžā§Ž āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻĻ⧁āχāϟāĻŋ āĻŽā§‚āϞ Îą āĻ“ β āĻšāϞ⧇ āϏāĻŽā§€āĻ•āϰāĻŖāϟāĻŋ āĻšāĻŦ⧇-

  x2 - (ι+β)x + ιβ = 0

¡ āĻ¤ā§āϰāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāĻŖ Cubic equation) : āĻŦāĻšā§āĻĒāĻĻā§€ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āϘāĻžāϤ 3 āĻšāϞ⧇ āϤāĻžāϕ⧇ āĻ¤ā§āϰāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāĻŖ āĻŦāϞ⧇ āĨ¤ āĻāĻ• āϚāϞāĻ•āĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āĻ¤ā§āϰāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āφāĻĻāĻ°ā§āĻļ āϰ⧂āĻĒ-

  ax3+bx2+cx+d = 0; āϝ⧇āĻ–āĻžāύ⧇ a≠0; a,b,c,d āĻŽā§‚āϞāĻĻ āϏāĻ‚āĻ–ā§āϝāĻž

¡ āĻ¤ā§āϰāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞ-āϏāĻšāĻ— āϏāĻŽā§āĻĒāĻ°ā§āĻ• : ax3+bx2+cx+d = 0 āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞāĻ¤ā§āϰ⧟ Îą,β,Îŗ āĻšāϞ⧇-

  i. = Îą+β+Îŗ = -b/a

  ii. = ιβ+Î˛Îŗ+ÎŗÎą = c/a

  iii. ÎąÎ˛Îŗ = -d/a

¡ Important formula :

i. (a+b)2 = a2+2ab+b2 = (a-b)2 +4ab

ii. (a-b)2= a2-2ab+b2 = (a+b)2 -4ab

iii. 4ab = (a+b)2-(a-b)2

iv. a2+b2 = (a+b)2-2ab = (a-b)2 +2ab

v. a3+b3 = (a+b)3-3ab(a+b) = (a+b)(a 2-ab+b2)

vi. a3-b3 = (a-b)3+3ab(a-b) = (a-b)(a 2+ab+b2)

vii. a4+b4 = [(a+b)2-2ab]2 -2(ab)2

viii. a2+b2+c2 = (a+b+c)2 -2(ab+bc+ca)

ix. (a+b)2+(b+c)2+(c+a)2 = 2(a2 +b2+c2+ab+bc+ca)

x. (a-b)2+(b-c)2+(c-a)2 = 2(a2 +b2+c2-ab-bc-ca)

xi. a3+b3+c3-3abc = (a+b+c)(a2 +b2+c2-ab-bc-ca)

= ÂŊ (a+b+c){(a-b)2+(b-c)2+(c-a)2}

= (a+b+c){(a+b+c)2-3(ab+bc+ca)}

āĻ—āĻžāĻŖāĻŋāϤāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻž āĻ“ āϏāĻŽāĻžāϧāĻžāύ :

1. x3-px2+qx-r = 0 āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞāϗ⧁āϞ⧋ Îą,β,Îŗ āĻšāϞ⧇-

a. $\sum \alpha$

b. $\sum \alpha \beta$

c. $\sum \alpha^{2}$

d. $\sum \alpha^{3}$ āĻāϰ āĻŽāĻžāύ āύāĻŋāĻ°ā§āϪ⧟ āĻ•āϰ āĨ¤

āϏāĻŽāĻžāϧāĻžāύ :

a. āĻāĻ–āĻžāύ⧇, $\sum \alpha=\alpha+\beta+\gamma=-(-\mathrm{p} / 1)=\mathrm{p}$ [See āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞ-āϏāĻšāĻ— āϏāĻŽā§āĻĒāĻ°ā§āĻ• i]

b. $\sum \alpha \beta=\alpha \beta+\beta \gamma+\gamma \alpha=\mathrm{q} / 1=\mathrm{q}$ [See āĻ¤ā§āϰāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞ-āϏāĻšāĻ— āϏāĻŽā§āĻĒāĻ°ā§āĻ• ii]

c. $\sum \alpha^{2}=\alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)-2(\alpha \beta+\beta y+\gamma \alpha)$ [See Important formula viii]

= p2-2q

d. $\sum \alpha^{3}=\alpha^{3}+\beta^{3}+\gamma^{3}=(\alpha+\beta+\gamma)\left\{\alpha^{2}+\beta^{2}+\gamma^{2}-3(\alpha \beta+\beta \gamma+\gamma \alpha)\right\}+3 \alpha \beta \gamma$ [See Important formulae xi]

= p(p2-2q-3q)+{-(-r/1)} [See āĻ¤ā§āϰāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞ āϏāĻšāĻ—-āϏāĻŽā§āĻĒāĻ°ā§āĻ•]

= p3-5pq+3r

 

2. x3+qx+r=0 āĻāϰ āĻŽā§‚āϞāϗ⧁āϞ⧋ Îą,β,Îŗ āĻšāĻ˛ā§‡Â $\frac{\gamma^{2}}{\alpha+\beta}+\frac{\alpha^{2}}{\beta+\gamma}+\frac{\beta^{2}}{\gamma+\alpha}$ āĻāϰ āĻŽāĻžāύ āύāĻŋāĻ°ā§āϪ⧟ āĻ•āϰ āĨ¤

āϏāĻŽāĻžāϧāĻžāύ :

āĻāĻ–āĻžāύ⧇, x3+qx+r = 0 ⇒ x3+0.x2+qx+r = 0

∴ Îą+β+Îŗ = 0...(i) [See āĻ¤ā§āϰāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞ-āϏāĻšāĻ— āϏāĻŽā§āĻĒāĻ°ā§āĻ• i]

(i) ⇒ Îą+β = -Îŗ; β+Îŗ = - Îą; Îą+Îŗ = -β

∴ $\frac{\gamma^{2}}{\alpha+\beta}+\frac{\alpha^{2}}{\beta+\gamma}+\frac{\beta^{2}}{\gamma+\alpha}=\frac{\gamma^{2}}{-\gamma}+\frac{\alpha^{2}}{-\alpha}+\frac{\beta^{2}}{-\beta}=-\gamma-\alpha-\beta=-(\alpha+\beta+\gamma)=0$

 

3. k āĻāϰ āĻŽāĻžāύ āĻ•āϤ āĻšāϞ⧇, (3k+1)x2+(11+k)x+9 = 0 āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞāϗ⧁āϞ⧋-

a. āϏāĻŽāĻžāύ

b. āĻŦāĻžāĻ¸ā§āϤāĻŦ āĻ“ āĻ…āϏāĻŽāĻžāύ

c. āϜāϟāĻŋāϞ āĻšāĻŦ⧇?

āϏāĻŽāĻžāϧāĻžāύ :

āĻāĻ–āĻžāύ⧇, āύāĻŋāĻļā§āϚāĻžā§ŸāĻ•, D = (11+k)2-4(3k+1)9 [See āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞ⧇āϰ āĻĒā§āϰāĻ•ā§ƒāϤāĻŋ]

= k2+22k+121-108k-86

= k2-86k+85

= k2-k-85k+85

= (k-1)(k-85)

a. āĻŽā§‚āϞāϗ⧁āϞ⧋ āϏāĻŽāĻžāύ āĻšāĻŦ⧇ āϝāĻĻāĻŋ D=0 āĻšā§Ÿ [See āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞ⧇āϰ āĻĒā§āϰāĻ•ā§ƒāϤāĻŋ i]

⇒ (k-1)(k-85) = 0

⇒ k=1 āĻ…āĻĨāĻŦāĻž 85 āĻšā§Ÿ

b. āĻŽā§‚āϞāϗ⧁āϞ⧋ āĻŦāĻžāĻ¸ā§āϤāĻŦ āĻ“ āĻ…āϏāĻŽāĻžāύ āĻšāĻŦ⧇ āϝāĻĻāĻŋ D>0 āĻšā§Ÿ [See āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞ⧇āϰ āĻĒā§āϰāĻ•ā§ƒāϤāĻŋ ii]

⇒ (k-1)(k-85) > 0

⇒ k<1 āĻ…āĻĨāĻŦāĻž 85>0 āĻšā§Ÿ [See Algebra - chaper 2 - āĻŦāĻžāĻ¸ā§āϤāĻŦ āϏāĻ‚āĻ–ā§āϝāĻž]

c. āĻŽā§‚āϞāϗ⧁āϞ⧋ āϜāϟāĻŋāϞ āĻšāĻŦ⧇ āϝāĻĻāĻŋ D<0 āĻšā§Ÿ [See āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞ⧇āϰ āĻĒā§āϰāĻ•ā§ƒāϤāĻŋ iii]

⇒ (k-1)(k-85) < 0

⇒ k<1<85 āĻšā§Ÿ [See Algebra - chaper 2 - āĻŦāĻžāĻ¸ā§āϤāĻŦ āϏāĻ‚āĻ–ā§āϝāĻž]

 

4. x2-2x+3 = 0 āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞ āĻĻ⧁āχāϟāĻŋ Îą āĻ“ β āĻšāϞ⧇ āύāĻŋāĻšā§‡āϰ āĻŽā§‚āϞāϗ⧁āϞ⧋ āĻĻā§āĻŦāĻžāϰāĻž āĻ—āĻ āĻŋāϤ āϏāĻŽā§€āĻ•āϰāĻŖāϏāĻŽā§‚āĻš āύāĻŋāĻ°ā§āϪ⧟ āĻ•āϰ āĨ¤

i. -ι, -β

ii. 1/ι, 1/ β

iii. -1/ ι, -1/ β

iv. ι+β, ιβ

v. 4ι, 4β

vi. ι -1, β-1

vii. ι2, β2

viii. 1/ ι2, 1/β2

ix. ι+ ι-1, β+β-1

x. ι+β-1, β+ ι-1

xi. $\frac{1}{\alpha-1}, \frac{1}{\beta-1}$

xii. 1/ι3, 1/β3

āϏāĻŽāĻžāϧāĻžāύ :

āĻāĻ–āĻžāύ⧇, Îą+β = 2 [See āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞ-āϏāĻšāĻ— āϏāĻŽā§āĻĒāĻ°ā§āĻ• i]

ιβ = 3 [See āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞ-āϏāĻšāĻ— āϏāĻŽā§āĻĒāĻ°ā§āĻ• ii]

i. āύāĻŋāĻ°ā§āĻŖā§‡ā§Ÿ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ, āĻŽā§‚āϞāĻĻā§āĻŦā§Ÿā§‡āϰ āϝ⧋āĻ—āĻĢāϞ = -Îą-β = -(Îą+β)

āĻŽā§‚āϞāĻĻā§āĻŦā§Ÿā§‡āϰ āϗ⧁āĻŖāĻĢāϞ = (-Îą)(-β) = ιβ

∴ -Îą āĻ“ -β āĻŽā§‚āϞāĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āϏāĻŽā§€āĻ•āϰāĻŖ āĻšāĻŦ⧇,

x2-(-Îą-β)x+(-Îą)(-β) = 0 [See āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāĻŖ āĻ—āĻ āύ]

⇒ x2+(α+β)x+αβ = 0

⇒ x2+2x+3 = 0

Short-cut : ax2+bx+c=0 āϏāĻŽā§€āĻ•āϰāϪ⧇ āĻŽā§‚āϞāĻĻā§āĻŦ⧟ Îą āĻ“ β āĻšāϞ⧇ -Îą āĻ“ -β āĻŽā§‚āϞāĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āϏāĻŽā§€āĻ•āϰāĻŖ āĻšāĻŦ⧇, ax2-bx+c=0

ii. āύāĻŋāĻ°ā§āĻŖā§‡ā§Ÿ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ, āĻŽā§‚āϞāĻĻā§āĻŦā§Ÿā§‡āϰ āϝ⧋āĻ—āĻĢāϞ = $-1 / \alpha-1 / \beta=-\frac{\alpha+\beta}{\alpha \beta}=-2 / 3$

āĻŽā§‚āϞāĻĻā§āĻŦā§Ÿā§‡āϰ āϗ⧁āĻŖāĻĢāϞ = 1/Îą × 1/β = 1/(ιβ) = 1/3

∴ 1/Îą āĻ“ 1/β āĻŽā§‚āϞāĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āϏāĻŽā§€āĻ•āϰāĻŖ āĻšāĻŦ⧇,

x2-(1/Îą+1/β)x+(1/Îą)(1/β) = 0 [see āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāĻŖ āĻ—āĻ āύ]

⇒ x2-2/3x+1/3 = 0

⇒ 3x2-2x+1 = 0

Short-cut : ax2+bx+c = 0 āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞāĻĻā§āĻŦ⧟ Îą āĻ“ β āĻšāϞ⧇ 1/Îą āĻ“ 1/β āĻŽā§‚āϞāĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āϏāĻŽā§€āĻ•āϰāĻŖ āĻšāĻŦ⧇, cx2+bx+a = 0

iii. āύāĻŋāĻ°ā§āĻŖā§‡ā§Ÿ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ, āĻŽā§‚āϞāĻĻā§āĻŦā§Ÿā§‡āϰ āϝ⧋āĻ—āĻĢāϞ = -1/Îą-1/β = - = -2/3

āĻŽā§‚āϞāĻĻā§āĻŦā§Ÿā§‡āϰ āϗ⧁āĻŖāĻĢāϞ = (-1/Îą)×(-1/β) = 1/(ιβ) = 1/3

∴ -1/Îą āĻ“ -1/β āĻŽā§‚āϞāĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āϏāĻŽā§€āĻ•āϰāĻŖ āĻšāĻŦ⧇,

x2-(-1/Îą-1/β)x+(-1/Îą)(-1/β) = 0 [See āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāĻŖ āĻ—āĻ āύ]

⇒ x2+(2/3)x+(1/3) = 0

⇒ 3x2+2x+1 = 0

Short-cut : ax2+bx+c = 0 āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞāĻĻā§āĻŦ⧟ Îą āĻ“ β āĻšāϞ⧇ -1/Îą āĻ“ -1/β āĻŽā§‚āϞāĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āϏāĻŽā§€āĻ•āϰāĻŖ āĻšāĻŦ⧇, cx2-bx+a = 0

iv. āύāĻŋāĻ°ā§āĻŖā§‡ā§Ÿ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ, āĻŽā§‚āϞāĻĻā§āĻŦā§Ÿā§‡āϰ āϝ⧋āĻ—āĻĢāϞ = Îą+β+ιβ = 5

āĻŽā§‚āϞāĻĻā§āĻŦā§Ÿā§‡āϰ āϗ⧁āĻŖāĻĢāϞ = (Îą+β)(ιβ) = 6

∴ Îą+β āĻ“ ιβ āĻŽā§‚āϞāĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āϏāĻŽā§€āĻ•āϰāĻŖ āĻšāĻŦ⧇,

x2-(Îą+β+ιβ)x+(Îą+β)(ιβ) = 0 [see āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāĻŖ āĻ—āĻ āύ]

⇒ x2-5x+6 = 0

Short-cut : ax2+bx+c = 0 āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞāĻĻā§āĻŦ⧟ Îą āĻ“ β āĻšāϞ⧇ Îą+β āĻ“ ιβ āĻŽā§‚āϞāĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āϏāĻŽā§€āĻ•āϰāĻŖ āĻšāĻŦ⧇, ax2+a(b-c)x-bc = 0

v. āύāĻŋāĻ°ā§āĻŖā§‡ā§Ÿ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ, āĻŽā§‚āϞāĻĻā§āĻŦā§Ÿā§‡āϰ āϝ⧋āĻ—āĻĢāϞ = 4Îą+4β = 4(Îą+β) = 8

āĻŽā§‚āϞāĻĻā§āĻŦā§Ÿā§‡āϰ āϗ⧁āĻŖāĻĢāϞ = (4Îą)(4β) = 16ιβ = 48

∴ 4Îą āĻ“ 4β āĻŽā§‚āϞāĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āϏāĻŽā§€āĻ•āϰāĻŖ āĻšāĻŦ⧇,

x2-(4Îą+4β)x+(4Îą)(4β) = 0 [see āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāĻŖ āĻ—āĻ āύ]

⇒ x2-8x+48 = 0

Short-cut : ax2+bx+c = 0 āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞāĻĻā§āĻŦ⧟ Îą āĻ“ β āĻšāϞ⧇ nÎą āĻ“ nβ āĻŽā§‚āϞāĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āϏāĻŽā§€āĻ•āϰāĻŖ āĻšāĻŦ⧇, ax2+nbx+n2c = 0

vi. āύāĻŋāĻ°ā§āĻŖā§‡ā§Ÿ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ, āĻŽā§‚āϞāĻĻā§āĻŦā§Ÿā§‡āϰ āϝ⧋āĻ—āĻĢāϞ = Îą-1+β-1 = Îą+β-2 = 0

āĻŽā§‚āϞāĻĻā§āĻŦā§Ÿā§‡āϰ āϗ⧁āĻŖāĻĢāϞ = (Îą-1)(β-1) = ιβ-Îą-β+1

= ιβ-(ι+β)+1

= 2

∴ (Îą-1) āĻ“ (β-1) āĻŽā§‚āϞāĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āϏāĻŽā§€āĻ•āϰāĻŖ āĻšāĻŦ⧇,

x2-(Îą-1+β-1)x+(Îą-1)(β-1) = 0 [see āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāĻŖ āĻ—āĻ āύ]

⇒ x2+2 = 0

Short-cut : ax2+bx+c = 0 āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞāĻĻā§āĻŦ⧟ Îą āĻ“ β āĻšāϞ⧇ (Îą-n) āĻ“ (β-n) āĻŽā§‚āϞāĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āϏāĻŽā§€āĻ•āϰāĻŖ āĻšāĻŦ⧇, ax2-(b-2an)x+c+bn+n2 = 0

vii. āύāĻŋāĻ°ā§āĻŖā§‡ā§Ÿ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ, āĻŽā§‚āϞāĻĻā§āĻŦā§Ÿā§‡āϰ āϝ⧋āĻ—āĻĢāϞ = Îą2+β2 = (Îą+β)2-2ιβ = 4-6 = -2

āĻŽā§‚āϞāĻĻā§āĻŦā§Ÿā§‡āϰ āϗ⧁āĻŖāĻĢāϞ = Îą2β2 = (ιβ)2 = 9

∴ Îą2 āĻ“ β2 āĻŽā§‚āϞāĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āϏāĻŽā§€āĻ•āϰāĻŖ āĻšāĻŦ⧇,

x2-(Îą2+β2)x+(Îą2)(β2) = 0 [see āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāĻŖ āĻ—āĻ āύ]

⇒ x2+2x+9 = 0

Short-cut : ax2+bx+c = 0 āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞāĻĻā§āĻŦ⧟ Îą āĻ“ β āĻšāϞ⧇ Îą2 āĻ“ β2 āĻŽā§‚āϞāĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āϏāĻŽā§€āĻ•āϰāĻŖ āĻšāĻŦ⧇, a2x 2+(b2-2ca)x+c2 = 0

viii. āύāĻŋāĻ°ā§āĻŖā§‡ā§Ÿ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ, āĻŽā§‚āϞāĻĻā§āĻŦā§Ÿā§‡āϰ āϝ⧋āĻ—āĻĢāϞ = 1/Îą2 + 1/β2

= $\frac{\alpha^{2}+\beta^{2}}{\alpha^{2} \beta^{2}}$

= $\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{(\alpha \beta)^{2}}$ [See Important formulae iv]

= (4-6)/9

= -2/9

āĻŽā§‚āϞāĻĻā§āĻŦā§Ÿā§‡āϰ āϗ⧁āĻŖāĻĢāϞ = 1/Îą2 . 1/β2 = 1/(ιβ)2 = 1/9

∴ 1/Îą2 āĻ“ 1/β2 āĻŽā§‚āϞāĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āϏāĻŽā§€āĻ•āϰāĻŖ āĻšāĻŦ⧇,

x2-(1/Îą2+1/β2)x+(1/Îą2)(1/β 2)=0 [see āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāĻŖ āĻ—āĻ āύ]

⇒ x2+(2/9)x+1/9 = 0

⇒ 9x2+2x+1 = 0

Short-cut : ax2+bx+c = 0 āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞāĻĻā§āĻŦ⧟ Îą āĻ“ β āĻšāϞ⧇ 1/Îą2 āĻ“ 1/β2 āĻŽā§‚āϞāĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āϏāĻŽā§€āĻ•āϰāĻŖ āĻšāĻŦ⧇, c2x 2-(b2-2ac)x+a2 = 0

ix. āύāĻŋāĻ°ā§āĻŖā§‡ā§Ÿ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ, āĻŽā§‚āϞāĻĻā§āĻŦā§Ÿā§‡āϰ āϝ⧋āĻ—āĻĢāϞ = Îą+Îą-1+β+β-1

= ι+β+1/ι+1/β

= (ι+β)+

= 2+2/3

= 8/3

āĻŽā§‚āϞāĻĻā§āĻŦā§Ÿā§‡āϰ āϗ⧁āĻŖāĻĢāϞ = (Îą+Îą-1)(β+β-1)

= ιβ+ι-1β+β-1ι+ι-1β-1

= ιβ+β/ι+ι/β+(1/ι)(1/β)

= $\alpha \beta+\frac{1}{\alpha \beta}+\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}$

= $\alpha \beta+\frac{1}{\alpha \beta}+\frac{(\alpha+\beta) 2-2 \alpha \beta}{\alpha \beta}$

= 3+1/3+(4-6)/3

= 8/3

∴ (Îą+Îą-1) āĻ“ (β+β-1) āĻŽā§‚āϞāĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āϏāĻŽā§€āĻ•āϰāĻŖ āĻšāĻŦ⧇,

x2-(Îą+Îą-1+β+β-1)x+(Îą+Îą-1)(β+β -1) = 0 [see āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāĻŖ āĻ—āĻ āύ]

⇒ x2-8/3x+8/3 = 0

⇒ 3x2-8x+8 = 0

Short-cut : ax2+bx+c = 0 āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞāĻĻā§āĻŦ⧟ Îą āĻ“ β āĻšāϞ⧇ Îą+Îą -1 āĻ“ β+β-1 āĻŽā§‚āϞāĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āϏāĻŽā§€āĻ•āϰāĻŖ āĻšāĻŦ⧇, acx2 +b(a+c)x+a2+b2+c2-2ac = 0

x. āύāĻŋāĻ°ā§āĻŖā§‡ā§Ÿ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ, āĻŽā§‚āϞāĻĻā§āĻŦā§Ÿā§‡āϰ āϝ⧋āĻ—āĻĢāϞ = Îą+β-1+1/Îą+1/β

= $(\alpha+\beta)+\frac{\alpha+\beta}{\alpha \beta}$

= 2+2/3

= 8/3

āĻŽā§‚āϞāĻĻā§āĻŦā§Ÿā§‡āϰ āϗ⧁āĻŖāĻĢāϞ = (Îą+β-1)(β+Îą-1)

= ιβ+1+1+ι-1β-1

= ιβ+2+ 1/(ιβ)

= 3+2+1/3

= 16/3

∴ (Îą+β-1) āĻ“ (β+Îą-1) āĻŽā§‚āϞāĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āϏāĻŽā§€āĻ•āϰāĻŖ āĻšāĻŦ⧇,

x2-(Îą+β-1+β+Îą-1)x+(Îą+β-1)(β+Îą -1) = 0 [see āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāĻŖ āĻ—āĻ āύ]

⇒ x2-(8/3)x+16/3 = 0

⇒ 3x2-8x+16 = 0

Short-cut : ax2+bx+c = 0 āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞāĻĻā§āĻŦ⧟ Îą āĻ“ β āĻšāϞ⧇ (Îą+β -1) āĻ“ (β+Îą-1) āĻŽā§‚āϞāĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āϏāĻŽā§€āĻ•āϰāĻŖ āĻšāĻŦ⧇, acx2 +b(a+c)x+(a+c)2 = 0

xi. āύāĻŋāĻ°ā§āĻŖā§‡ā§Ÿ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ, āĻŽā§‚āϞāĻĻā§āĻŦā§Ÿā§‡āϰ āϝ⧋āĻ—āĻĢāĻ˛Â 

$=\frac{1}{\alpha-1}+\frac{1}{\beta-1}$
$=\frac{\alpha-1+\beta-1}{(\alpha-1)(\beta-1)}$
$=\frac{\alpha+\beta-2}{\alpha \beta-\alpha-\beta+1}$
$=\frac{(\alpha+\beta)-2}{\alpha \beta-(\alpha+\beta)+1}$

= 0

āĻŽā§‚āϞāĻĻā§āĻŦā§Ÿā§‡āϰ āϗ⧁āĻŖāĻĢāĻ˛Â 

$=\frac{1}{\alpha-1} \times \frac{1}{\beta-1}$
$=\frac{1}{\alpha \beta-(\alpha+\beta)+1}$

= 1/(3-2+1)

= 1/2

∴ 1/(Îą-1) āĻ“ 1/(β-1) āĻŽā§‚āϞāĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āϏāĻŽā§€āĻ•āϰāĻŖ āĻšāĻŦ⧇,

$\mathrm{x}^{2}-\left(\frac{1}{\alpha-1}+\frac{1}{\beta-1}\right) \mathrm{x}+\left(\frac{1}{\alpha-1}\right)\left(\frac{1}{\beta-1}\right)=0$ [see āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāĻŖ āĻ—āĻ āύ]

⇒ x2+1/2 = 0

⇒ 2x2+1= 0

Short-cut : ax2+bx+c = 0 āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞāĻĻā§āĻŦ⧟ Îą āĻ“ β āĻšāĻ˛ā§‡Â $\frac{1}{\alpha-1}$ āĻ“Â $\frac{1}{\beta-1}$ āĻŽā§‚āϞāĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āϏāĻŽā§€āĻ•āϰāĻŖ āĻšāĻŦ⧇, (a+b+c)x2+(b+2a)x+a = 0

xii. āύāĻŋāĻ°ā§āĻŖā§‡ā§Ÿ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ, āĻŽā§‚āϞāĻĻā§āĻŦā§Ÿā§‡āϰ āϝ⧋āĻ—āĻĢāϞ = 1/Îą3 + 1/β3

$=\frac{\alpha^{3}+\beta^{3}}{\alpha^{3} \beta^{3}}$
$=\frac{(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)}{(\alpha \beta)^{3}}$ [See important formula v]

= (23-3.3.2)/33

= 10/27

āĻŽā§‚āϞāĻĻā§āĻŦā§Ÿā§‡āϰ āϗ⧁āĻŖāĻĢāϞ = 1/Îą3 . 1/β3

= 1/(ιβ)3

= 1/27

∴ 1/Îą3 āĻ“ 1/β3 āĻŽā§‚āϞāĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āϏāĻŽā§€āĻ•āϰāĻŖ āĻšāĻŦ⧇,

x2-(1/Îą3 + 1/β3 )x+(1/Îą3)(1/β 3) = 0 [see āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāĻŖ āĻ—āĻ āύ]

⇒ x2-(10/27)x+1/27 = 0

⇒ 27x2-10x+1 = 0

Short-cut : ax2+bx+c = 0 āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞāĻĻā§āĻŦ⧟ Îą āĻ“ β āĻšāϞ⧇ 1/Îą3 āĻ“ 1/β3 āĻŽā§‚āϞāĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āϏāĻŽā§€āĻ•āϰāĻŖ āĻšāĻŦ⧇, c3x+b(b 2-3ac)x+a3 = 0

5. $\sqrt{-5}-1$ āϕ⧋āύ āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻāĻ•āϟāĻŋ āĻŽā§‚āϞ āĻšāϞ⧇ āĻ…āĻĒāϰ āĻŽā§‚āϞāϟāĻŋ āĻ•āϤ? āϏāĻŽā§€āĻ•āϰāĻŖāϟāĻŋ āύāĻŋāĻ°ā§āϪ⧟ āĻ•āϰ āĨ¤

āϏāĻŽāĻžāϧāĻžāύ :

āĻāĻ–āĻžāύ⧇, āĻāĻ•āϟāĻŋ āĻŽā§‚āĻ˛Â $\sqrt{-5}-1=-1+i \sqrt{5} \quad[i=\sqrt{-1}]$

∴ āĻ…āĻĒāϰ āĻŽā§‚āϞ = $-1-i \sqrt{5}$ [See āĻ…āύ⧁āĻŦāĻ¨ā§āϧ⧀ āĻŽā§‚āϞ āωāĻĒāĻĒāĻžāĻĻā§āϝ]

∴ āύāĻŋāĻ°ā§āĻŖā§‡ā§Ÿ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ, āĻŽā§‚āϞāĻĻā§āĻŦā§Ÿā§‡āϰ āϝ⧋āĻ—āĻĢāϞ = $-1+\mathrm{i} \sqrt{5}-1-\mathrm{i} \sqrt{5}=-2$

āĻŽā§‚āϞāĻĻā§āĻŦā§Ÿā§‡āϰ āϗ⧁āĻŖāĻĢāϞ = $(-1+i \sqrt{5})(-1-i \sqrt{5})$

= $(-1)^{2}-(\mathrm{i} \sqrt{5})^{2}$ [(a+b)(a-b) = a2-b 2]

= 1-i25

= 1-i2.5

= 1+5 [i2 = -1]

= 6

∴ āύāĻŋāĻ°ā§āĻŖā§‡ā§Ÿ āϏāĻŽā§€āĻ•āϰāĻŖ, $x^{2}-(-1+i \sqrt{5})(-1-i \sqrt{5}) x+(-1+i \sqrt{5})(-1-i \sqrt{5})=0$ [see āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāĻŖ āĻ—āĻ āύ]

⇒ x2+2x+6 = 0

Short-cut : āϕ⧋āύ āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻāĻ•āϟāĻŋ āĻŽā§‚āϞ a+ib āĻšāϞ⧇ āϏāĻŽā§€āĻ•āϰāĻŖāϟāĻŋ āĻšāĻŦ⧇, x 2-2ax+(a2+b2)=0

6. 3x2-2x+k=0 āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞāĻĻā§āĻŦā§Ÿā§‡āϰ āĻ…āĻ¨ā§āϤāϰ 1 āĻāĻ•āĻ• āĻšāϞ⧇ k āĻāϰ āĻŽāĻžāύ āĻ•āϤ?

āϏāĻŽāĻžāϧāĻžāύ :

āϧāϰāĻŋ, āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞāĻĻā§āĻŦ⧟ Îą āĻ“ β (āϝ⧇āĻ–āĻžāύ⧇ Îą>β)

āĻĻ⧇āĻ“ā§ŸāĻž āφāϛ⧇, Îą-β=1 āĻāĻ–āĻžāύ⧇, Îą+β = -(-2/3) = 2/3 [See āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞ-āϏāĻšāĻ— āϏāĻŽā§āĻĒāĻ°ā§āĻ• i]

āĻāĻŦāĻ‚ ιβ = k/3 [See āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞ-āϏāĻšāĻ— āϏāĻŽā§āĻĒāĻ°ā§āĻ• ii]

āĻāĻ–āύ, 4ιβ = (Îą+β)2-(Îą-β)2 [See Important formulae iii]

⇒ 4αβ = (2/3)2-(1)2

⇒ 4.(k/3) = 4/9-1

⇒ (4/3)k = -5/9

∴ k = -5/9 × 3/4 = -5/12

Short-cut : ax2+bx+c=0 āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞāĻĻā§āĻŦā§Ÿā§‡āϰ āĻ…āĻ¨ā§āϤāϰ 1 āĻāĻ•āĻ• āĻšāϞ⧇, b 2-a2 = 4ca

āĻāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇, (-2)2-32 = 4.k.3

⇒ 12k = -5

⇒ k = -5/12

7. px2+qx+q=0 āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞāĻĻā§āĻŦā§Ÿā§‡āϰ āĻ…āύ⧁āĻĒāĻžāϤ mâˆļn āĻšāϞ⧇, $\sqrt{\frac{\mathrm{m}}{\mathrm{n}}}+\sqrt{\frac{\mathrm{n}}{\mathrm{m}}}+\sqrt{\frac{\mathrm{q}}{\mathrm{p}}}$ āĻāϰ āĻŽāĻžāύ āĻ•āϤ?

āϏāĻŽāĻžāϧāĻžāύ :

āϧāϰāĻŋ, āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞāĻĻā§āĻŦ⧟ Îą āĻ“ β āĨ¤

∴ Îą+β = -q/p [see āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞ-āϏāĻšāĻ— āϏāĻŽā§āĻĒāĻ°ā§āĻ• i]

∴ ιβ = q/p [see āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞ-āϏāĻšāĻ— āϏāĻŽā§āĻĒāĻ°ā§āĻ• ii]

āĻĻ⧇āĻ“ā§ŸāĻž āφāϛ⧇, Îą/β = m/n

āϤāĻžāĻšāϞ⧇, $\sqrt{\frac{\mathrm{m}}{\mathrm{n}}}+\sqrt{\frac{\mathrm{n}}{\mathrm{m}}}+\sqrt{\frac{\mathrm{q}}{\mathrm{p}}}$

⇒ $\sqrt{\frac{\alpha}{\beta}}+\sqrt{\frac{\beta}{\alpha}}+\sqrt{\frac{\mathrm{q}}{\mathrm{p}}}$

⇒ $\frac{\sqrt{\alpha}}{\sqrt{\beta}}+\frac{\sqrt{\beta}}{\sqrt{\alpha}}+\sqrt{\frac{q}{p}} \quad\left[\because \sqrt{\frac{x}{y}}=\frac{\sqrt{x}}{\sqrt{y}}\right]$

$\Rightarrow \frac{(\sqrt{\alpha})^{2}+(\sqrt{\beta})^{2}}{\sqrt{\alpha} \sqrt{\beta}}+\sqrt{\frac{q}{p}}$
$\Rightarrow \frac{\alpha+\beta}{\sqrt{\alpha \beta}}+\sqrt{\frac{q}{p}} \quad\left[\because \sqrt{x} \cdot \sqrt{y}=\sqrt{x y} \&(\sqrt{x})^{2}=x\right]$
$\Rightarrow \frac{-q / p}{\sqrt{q} / p}+\sqrt{\frac{q}{p}}$
$\Rightarrow \frac{-\sqrt{q / p} \times \sqrt{q / p}}{\sqrt{q / p}}+\sqrt{q / p} \quad[\because x=\sqrt{x} \times \sqrt{x}]$
$\Rightarrow-\sqrt{q / p}+\sqrt{q / p}=0$

8. ax2+2x+1 = 0 āĻāĻŦāĻ‚ x2+2x+a = 0 āϏāĻŽā§€āĻ•āϰāĻŖāĻĻā§āĻŦā§Ÿā§‡āϰ āĻāĻ•āϟāĻŋ āϏāĻžāϧāĻžāϰāĻŖ āĻŽā§‚āϞ āĻĨāĻžāĻ•āϞ⧇ a āĻāϰ āĻŽāĻžāύ āύāĻŋāĻ°ā§āϪ⧟ āĻ•āϰ āĨ¤ (a≠1)

āϏāĻŽāĻžāϧāĻžāύ :

āϧāϰāĻŋ, āϏāĻžāϧāĻžāϰāĻŖ āĻŽā§‚āϞ p āĨ¤

âˆĩ p āωāϭ⧟ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āϏāĻžāϧāĻžāϰāĻŖ āĻŽā§‚āϞ ∴ p āĻĻā§āĻŦāĻžāϰāĻž āϏāĻŽā§€āĻ•āϰāĻŖāĻĻā§āĻŦ⧟ āϏāĻŋāĻĻā§āϧ āĻšāĻŦ⧇ āĨ¤

āĻ…āĻ°ā§āĻĨāĻžā§Ž, ap2+2p+1=0 â€Ļ(i)

āĻāĻŦāĻ‚, p2+2p+a=0 â€Ļ(ii)

(i) āĻ“ (ii) āĻĨ⧇āϕ⧇ āĻŦāĻœā§āϰāϗ⧁āĻŖāύ āĻĒāĻĻā§āϧāϤāĻŋāϰ āϏāĻžāĻšāĻžāĻ¯ā§āϝ⧇ āĻĒāĻžāχ,

$\frac{p^{2}}{2 a-2}=\frac{p}{1-a^{2}}=\frac{1}{2 a-2}$ â€Ļ(iii) [a1x2+b1x+c1 = 0 āĻ“ a 2x2+b2x+c2=0 āĻšāϞ⧇ āĻŦāĻœā§āϰāϗ⧁āĻŖāύ āĻĒāĻĻā§āϧāϤāĻŋ āĻ…āύ⧁āϏāĻžāϰ⧇, $\frac{x^{2}}{b_{1} c_{2}-b_{2} c_{1}}=\frac{x}{c_{1} a_{2}-c_{2} a_{1}}=\frac{1}{a_{1} b_{2}-b_{2} a_{1}}$ ]

(iii) ⇒ = $\frac{\mathrm{p}^{2}}{2 \mathrm{a}-2}=\frac{\mathrm{p}}{1-\mathrm{a}^{2}}$

⇒ p2 = 1

⇒ p = ±1

āφāĻŦāĻžāϰ, (iii) 

$\Rightarrow \frac{1}{1-a^{2}}=\frac{1}{2 a-2}$
$\Rightarrow p=\frac{-\left(a^{2}-1\right)}{2 a-2}$
$\Rightarrow p=\frac{-(a+1)(a-1)}{2(a-1)}$
$\Rightarrow p=\frac{(a+1)}{2} \ldots(i v)$

P=1 āĻšāϞ⧇ (iv) ⇒ $-\frac{(a+1)}{2}=1$

⇒ -a-1 = 2

⇒ a=1

P = -1 āĻšāϞ⧇ (iv) ⇒ $-\frac{(a+1)}{2}=-1$

⇒ -a-1 = -2

⇒ a = 1

āĻŦāĻŋāĻ•āĻ˛ā§āĻĒ āĻĒāĻĻā§āϧāϤāĻŋ :

āϧāϰāĻŋ, āϏāĻžāϧāĻžāϰāĻŖ āĻŽā§‚āϞ p āĨ¤

∴ ap2+2p+1 = 0 â€Ļ(i) āĻāĻŦāĻ‚, p2+2p+a = 0 â€Ļ(ii)

(i) – (ii) ⇒ ap2-p2+1-a = 0

⇒ p2(a-1)-(a-1) = 0

⇒ (p2-1)(a-1) = 0

āĻ•āĻŋāĻ¨ā§āϤ⧁ a≠1⇒ a-1 ≠ 0

∴ p2-1=0 ⇒ p = ±1

p=1 āĻšāϞ⧇ (i) ⇒ a(1)2+2(1)+1=0 ⇒ a = -3

p=-1 āĻšāϞ⧇ (i) ⇒ a(-1)2+2(-1)+1=0 ⇒ a = 1

 

9. x āĻāϰ āϕ⧋āύ āĻŦāĻžāĻ¸ā§āϤāĻŦ āĻŽāĻžāύ⧇āϰ āϜāĻ¨ā§āϝ-

a. x2-6x+45 āĻāϰ āĻŽāĻžāύ āĻ¨ā§āϝ⧂āύāϤāĻŽ āĻšāĻŦ⧇? āĻ¨ā§āϝ⧂āύāϤāĻŽ āĻŽāĻžāύ āύāĻŋāĻ°ā§āϪ⧟ āĻ•āϰ āĨ¤

b. 19-x2+6x āĻāϰ āĻŽāĻžāύ āĻŦ⧃āĻšāĻ¤ā§āϤāĻŽ āĻšāĻŦ⧇? āĻŦ⧃āĻšāĻ¤ā§āϤāĻŽ āĻŽāĻžāύ āύāĻŋāĻ°ā§āϪ⧟ āĻ•āϰ āĨ¤

āϏāĻŽāĻžāϧāĻžāύ :

a. f(x) = x2-6x+45 āĻāϰ āĻ¨ā§āϝ⧂āύāϤāĻŽ āĻŽāĻžāύ āĻĒāĻžāĻ“ā§ŸāĻž āϝāĻžāĻŦ⧇ āϝāĻĻāĻŋ a>0 āĻšā§Ÿ āĨ¤

x = -b/2a āĻāϰ āϜāĻ¨ā§āϝ f(x) āĻāϰ āĻ¨ā§āϝ⧂āύāϤāĻŽ āĻŽāĻžāύ āĻĒāĻžāĻ“ā§ŸāĻž āϝāĻžāĻŦ⧇ āϝ⧇āĻ–āĻžāύ⧇, āĻ¨ā§āϝ⧂āύāϤāĻŽ āĻŽāĻžāύ = f(-b/2a)

āĻāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇, x=-(-b/2a)=3 āĻāϰ āϜāĻ¨ā§āϝ āĻ¨ā§āϝ⧂āύāϤāĻŽ āĻŽāĻžāύ āĻĒāĻžāĻ“ā§ŸāĻž āϝāĻžāĻŦ⧇ āĨ¤

∴ āĻ¨ā§āϝ⧂āύāϤāĻŽ āĻŽāĻžāύ = f(-b/2a) = f(3) = (3)2-6(3)+45 = 36

b. f(x) = 19-x2+6x āĻāϰ āĻŦ⧃āĻšāĻ¤ā§āϤāĻŽ āĻŽāĻžāύ āĻĒāĻžāĻ“ā§ŸāĻž āϝāĻžāĻŦ⧇ āϝāĻĻāĻŋ a<0 āĻšā§Ÿ āĨ¤

x = -b/2a āĻāϰ āϜāĻ¨ā§āϝ f(x) āĻāϰ āĻŦ⧃āĻšāĻ¤ā§āϤāĻŽ āĻŽāĻžāύ āĻĒāĻžāĻ“ā§ŸāĻž āϝāĻžāĻŦ⧇ āϝ⧇āĻ–āĻžāύ⧇ āĻŦ⧃āĻšāĻ¤ā§āϤāĻŽ āĻŽāĻžāύ = f(-b/2a)

āĻāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇, x=-(b/-2a)=3 āĻāϰ āϜāĻ¨ā§āϝ āĻŦ⧃āĻšāĻ¤ā§āϤāĻŽ āĻŽāĻžāύ āĻĒāĻžāĻ“ā§ŸāĻž āϝāĻžāĻŦ⧇ āĨ¤

∴ āĻŦ⧃āĻšāĻ¤ā§āϤāĻŽ āĻŽāĻžāύ = f(-b/2a) = f(3) = 19-(3)2+6(3) = 28 →

Calculator techniques : Calculator-āĻāϰ āϏāĻžāĻšāĻžāĻ¯ā§āϝ⧇ āĻĻā§āĻŦāĻŋāϘāĻžāϤ āĻ“ āĻ¤ā§āϰāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞāϗ⧁āϞ⧋āϰ āĻŽāĻžāύ āύāĻŋāĻ°ā§āϪ⧟ āĻ•āϰāĻž āϝāĻžā§Ÿ āĨ¤ āĻĒā§āϰāĻžāĻĒā§āϤ āĻŽāĻžāύ āĻĒā§āϰāĻļā§āύ⧇āϰ āĻļāĻ°ā§āϤāĻžāύ⧁āϏāĻžāϰ⧇ āĻĒāϰāĻŋāĻŦāĻ°ā§āϤāĻŋāϤ āĻ•āϰ⧇ āϏāĻšāĻœā§‡āχ āύāϤ⧁āύ āĻĻā§āĻŦāĻŋāϘāĻžāϤ/ āĻ¤ā§āϰāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāĻŖ āĻ—āĻ āύ āĻ•āϰāĻž āϝāĻžā§Ÿ āĨ¤

ax2+bx+c=0 āφāĻ•ā§ƒāϤāĻŋāϰ āϏāĻŽā§€āĻ•āϰāĻŖ āϏāĻŽāĻžāϧāĻžāύ⧇āϰ āϜāĻ¨ā§āϝ āϚāĻžāĻĒ⧁āύ-

polynomial-calculator-tips-1

āĻāϰāĻĒāϰ a,b,c āĻāϰ āĻŽāĻžāύ input āĻ•āϰāϞ⧇āχ āϏāĻŽāĻžāϧāĻžāύ āĻĒā§‡ā§Ÿā§‡ āϝāĻžāĻŦ⧇āύ āĨ¤

ax3+bx2+cx+d āφāĻ•ā§ƒāϤāĻŋāϰ āϏāĻŽā§€āĻ•āϰāĻŖ āϏāĻŽāĻžāϧāĻžāύ⧇āϰ āϜāĻ¨ā§āϝ āϚāĻžāĻĒ⧁āύ-

polynomial-calculator-tips-2

Example 4 āĻāϰ āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāĻŖ āϏāĻŽāĻžāϧāĻžāύ⧇āϰ āϜāĻ¨ā§āϝ āĻĒā§‚āĻ°ā§āĻŦā§‹āĻ•ā§āϤ āĻĒā§āϰāĻ•ā§āϰāĻŋ⧟āĻžā§Ÿ 2 degree equation mode āĻ āĻĒā§āϰāĻŦ⧇āĻļ āĻ•āϰ⧇ āϚāĻžāĻĒāϤ⧇ āĻšāĻŦ⧇-

polynomial-calculator-tips-3

āĻ…āĻ°ā§āĻĨāĻžā§Ž, āωāĻ•ā§āϤ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞāĻĻā§āĻŦ⧟ āĻ…āĻŦāĻžāĻ¸ā§āϤāĻŦ āĨ¤ āĻŽāĻžāĻ¨Â $1+\sqrt{2} \mathrm{i}$ āĻ“Â $1-\sqrt{2} \mathrm{i}$ āĨ¤Â polynomial-calculator-tips-4 āĻšā§‡āĻĒ⧇ āĻŦāĻžāĻ¸ā§āϤāĻŦ āĻ“ āĻ•āĻžāĻ˛ā§āĻĒāύāĻŋāĻ• āĻ…āĻ‚āĻļ āĻĻ⧇āĻ–āĻž āϝāĻžā§Ÿ āĨ¤

āĻĸāĻžāĻŦāĻŋāϰ āĻŦāĻŋāĻ—āϤ āĻŦāĻ›āϰ⧇āϰ āĻĒā§āϰāĻļā§āύ āĻ“ āϏāĻŽāĻžāϧāĻžāύ :

1. x2-5x-3=0 āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞāĻĻā§āĻŦ⧟ Îą, β āĻšāϞ⧇ 1/Îą, 1/β āĻŽā§‚āϞāĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āϏāĻŽā§€āĻ•āϰāĻŖ āϕ⧋āύāϟāĻŋ? [DU : 1999-2000]

a. 3x2+5x-1=0

b. 3x2-5x+1=0

c. 5x2+x-3=0

d. 5x2-x-3=0

2. x2-4x+4=0 āĻāϰ āĻŦā§€āϜāĻĻā§āĻŦ⧟ Îą āĻāĻŦāĻ‚ β āĻšāϞ⧇ Îą3+β3 āĻāϰ āĻŽāĻžāύ āĻ•āϤ? [DU : 2000-01]

a. 24

b. 32

c. 16

d. 8

3. x2-5x-3=0 āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞāĻĻā§āĻŦ⧟ x1, x 2 āĻšāϞ⧇ 1/x1, 1/x2 āĻŽā§‚āϞāĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āϏāĻŽā§€āĻ•āϰāĻŖ āĻ•āĻŋ? [DU : 2001-02]

a. 3x2-5x+1=0

b. 5x2+x-3=0

c. 3x2+5x-1=0

d. 5x2-x-3=0

4. p āĻāϰ āĻ•āĻŋāϰ⧂āĻĒ āĻŽāĻžāύ⧇āϰ āϜāĻ¨ā§āϝ x2+px+1 = 0 āϏāĻŽā§€āĻ•āϰāĻŖāϟāĻŋāϰ āĻŽā§‚āϞāĻĻā§āĻŦ⧟ āϜāϟāĻŋāϞ āĻšāĻŦ⧇? [DU : 2002-03]

a. -2≤p≤2

b. -4<p≤4

c. -2<p<2

d. -4≤p<4

5. 6x2-5x+1=0 āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞāĻĻā§āĻŦ⧟ Îą, β āĻšāϞ⧇ 1/Îą, 1/β āĻŽā§‚āϞ āĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āϏāĻŽā§€āĻ•āϰāĻŖāϟāĻŋ āĻšāĻŦ⧇- [DU : 2004-05]

a. x2-5x+6=0

b. 3x2-2x+5=0

c. x2-6x+5=0

d. 5x2+2x-6=0

6. k āĻāϰ āϝ⧇ āĻŽāĻžāύ⧇āϰ āϜāĻ¨ā§āϝ āϏāĻŽā§€āĻ•āϰāĻŖ (k+1)x2+4(k-2)x+2k = 0 āĻāϰ āĻŽā§‚āϞāĻĻā§āĻŦā§Ÿā§‡āϰ āĻŽāĻžāύ āϏāĻŽāĻžāύ āĻšāĻŦ⧇ āϤāĻž- [DU : 2004-05]

a. 4

b. 8

c. 2

d. 3

7. x2-2x+3=0 āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞāĻĻā§āĻŦ⧟ Îą, β āĻšāϞ⧇ Îą+β, ιβ āĻŽā§‚āϞāĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āϏāĻŽā§€āĻ•āϰāĻŖāϟāĻŋ āĻšāĻŦ⧇- [DU : 2005-06]

a. x2-5x+6 = 0

b. 3x2-2x+1 = 0

c. x2-3x+2 = 0

d. 2x2-3x+1 = 0

8. x2-3x+5 āĻāϰ āĻ¨ā§āϝ⧂āύāϤāĻŽ āĻŽāĻžāύ- [DU : 2006-07]

a. 3

b. 5

c. 15/4

d. 11/4

9. x2-5x-1 = 0 āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞāĻĻā§āĻŦ⧟ āĻšāϤ⧇ 2 āĻ•āĻŽ āĻŽā§‚āϞāĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āϏāĻŽā§€āĻ•āϰāĻŖāϟāĻŋ āĻšāϞ- [DU : 2007-08]

a. x2+x+7 = 0

b. x2-x-7 = 0

c. x2+x-7 = 0

d. x2-x-7 = 0

10. 5+3x-x2 āĻāϰ āϏāĻ°ā§āĻŦā§‹āĻšā§āϚ āĻŽāĻžāύ- [DU : 2008-09]

a. 3

b. 11/4

c. 29/4

d. 27/4

11. x2-7x+12 = 0 āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞāĻĻā§āĻŦ⧟ Îą āĻāĻŦāĻ‚ β āĻšāϞ⧇, Îą+β āĻāĻŦāĻ‚ ιβ āĻŽā§‚āϞāĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āϏāĻŽā§€āĻ•āϰāĻŖ- [DU : 2009-10]

a. x2-19x+84 = 0

b. x2+14x+144 = 0

c. x2-14x+144 = 0

d. x2+19x-84 = 0

āĻĸāĻžāĻŦāĻŋāϰ āĻŦāĻŋāĻ—āϤ āĻŦāĻ›āϰ⧇āϰ āĻĒā§āϰāĻļā§āύ⧇āϰ āϏāĻŽāĻžāϧāĻžāύ :

1. āύāĻŋāĻ°ā§āĻŖā§‡ā§Ÿ āϏāĻŽā§€āĻ•āϰāĻŖ, -3x2-5x+1=0 [see example 4 (ii)]

⇒ 3x2+5x-1 = 0

∴ ans. a

2. āĻāĻ–āĻžāύ⧇, Îą+β=4; ιβ=4 [See āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞ-āϏāĻšāĻ— āϏāĻŽā§āĻĒāĻ°ā§āĻ•]

∴ ι3+β3 = (ι+β)3-3ιβ(ι+β)

= 16

∴ ans. c

3. āύāĻŋāĻ°ā§āĻŖā§‡ā§Ÿ āϏāĻŽā§€āĻ•āϰāĻŖ, -3x2-5x+1=0 [see example 4 (ii)]

⇒ 3x2+5x-1 = 0

∴ ans. c

4. āĻŽā§‚āϞāĻĻā§āĻŦ⧟ āϜāϟāĻŋāϞ āĻšāĻŦ⧇ āϝāĻĻāĻŋ p2- 4 < 0

⇒ p2 < 4 [see example 3 (c)]

⇒ -2<p<2 āĻšā§Ÿ

∴ ans. c

5. āύāĻŋāĻ°ā§āĻŖā§‡ā§Ÿ āϏāĻŽā§€āĻ•āϰāĻŖ, x2-5x+6=0

∴ ans.a

6. āĻŽā§‚āϞāĻĻā§āĻŦ⧟ āϏāĻŽāĻžāύ āĻšāĻŦ⧇ āϝāĻĻāĻŋ {4(k-2)}2-4.(k+1).2k=0 āĻšā§Ÿ [See example 3(a)]

⇒ 16(k-2)2 = 8k(k+1)

⇒ 2(k2-4k+4) = k2+k

⇒ 2k2-8k+8 = k2+k

⇒ k2-9k+8 = 0

⇒ k = 1 or, 8 [use calculator/manually factorize through middle term process]

∴ ans.b

7. ι+β = 2; ιβ = 3; ∴ ι+β+ιβ = 5 &, (ι+β)(ιβ) = 6 [see example 4 (iv)]

∴ āύāĻŋāĻ°ā§āĻŖā§‡ā§Ÿ āϏāĻŽā§€āĻ•āϰāĻŖ, x2-5x+6 = 0

∴ ans.a

8. –b/2a = 3/2

∴ f(3/2) = (3/2)2-3(3/2)+5 [see example 9]

= 11/4

∴ ans.d

10. Îą+β = 5; ιβ = -1 [See āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞ-āϏāĻšāĻ— āϏāĻŽā§āĻĒāĻ°ā§āĻ•]

∴ (ι-2)(β-2) = ιβ-2(ι+β)+4 = -7

∴ ι-2+β-2 = 1

∴ x2-(Îą-2+β-2)x+(Îą-2)(β-2) = 0 [see āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāĻŖ āĻ—āĻ āύ]

⇒ x2-x-7 = 0

∴ ans.d

10. –b/2a = 3/2

∴ f(3/2) = 5+3(3/2)-(3/2)2 = 29/4 [see example 9]

∴ ans.c

11. Îą+β = 7; ιβ = 12 [See āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞ-āϏāĻšāĻ— āϏāĻŽā§āĻĒāĻ°ā§āĻ•]

∴ ι+β+ιβ = 19; ∴ (ι+β)(ιβ) = 84

∴ x2-(ι+β+ιβ)x+(ι+β)(ιβ) = 0 [see example 4 (iv)]

⇒ x2-19x+84 = 0

∴ ans.a