|
āĻĒā§āϰāϤā§āĻ āĻĒāϰāĻŋāĻāĻŋāϤāĻŋ |
     āĻāĻāĻ |
|
|
Â ā§§.āĻāĻžāϰā§āĻā§āϰ āϤāϞāĻŽāĻžāϤā§āϰāĻŋāĻ āĻāύāϤā§āĻŦ, $\sigma=\frac{\mathrm{Q}}{\mathrm{A}}$ |
Ī = āĻāĻžāϰā§āĻā§āϰ āϤāϞāĻŽāĻžāϤā§āϰāĻŋāĻ āĻāύāϤā§āĻŦ |
āĻā§āϞāĻŽā§āĻŦ/ āĻŽāĻŋāĻāĻžāϰ⧍ (C/m2) |
|
Â ā§¨.āĻā§āϞāĻā§āϰ āĻā§āώā§āϤā§āϰ⧠āĻāĻžāϰā§āĻā§āϰ āϤāϞāĻŽāĻžāϤā§āϰāĻŋāĻ āĻāύāϤā§āĻŦ, $\sigma=\frac{Q}{4 \pi r^{2}}$ |
4Īr2= āĻā§āϞāĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ |
āĻŦāϰā§āĻāĻŽāĻŋāĻāĻžāϰ (m2) |
|
Â ā§Š.āĻā§āϞāĻŽā§āĻŦā§āϰ āϏā§āϤā§āϰāĻžāύā§āϏāĻžāϰā§,āĻŦāϞ, |
F = āĻā§āϞāĻŽā§āĻŦ āĻŦāϞ |
āύāĻŋāĻāĻāύ (N) |
|
 ā§Ē.āϤāĻĄāĻŧāĻŋā§ āĻā§āώā§āϤā§āϰā§āϰ āĻŦāĻŋāĻāĻŦ, |
Īĩ0 = āĻļā§āύā§āϝāϏā§āĻĨāĻžāύā§āϰ āĻā§āĻĻāύ āϝā§āĻā§āϝāϤāĻž |
āĻĢā§āϝāĻžāϰāĻĄ/āĻŽāĻŋāĻāĻžāϰ (F/m) |
|
 ā§Ģ.āϤāĻĄāĻŧāĻŋā§ āĻā§āώā§āϤā§āϰā§āϰ āĻĒā§āϰāĻžāĻŦāϞā§āϝ, |
E = āϤāĻĄāĻŧāĻŋā§ āĻĒā§āϰāĻžāĻŦāϞā§āϝ |
āύāĻŋāĻāĻāύ/āĻā§āϞāĻŽā§āĻŦ (N/C) āĻŦāĻž āĻā§āϞā§āĻ/āĻŽāĻŋāĻāĻžāϰ (V/m) |
|
 ā§Ŧ.āĻā§āϞāĻ āĻĒā§āώā§āĻ ā§ āĻ āĻ
āĻā§āϝāύā§āϤāϰ⧠āĻŦāĻŋāĻāĻŦ, |
 R = āĻĒāϰāĻŋāĻŦāĻžāĻšā§ āĻā§āϞāĻā§āϰ āĻŦā§āϝāĻžāϏāĻžāϰā§āϧ |
 āĻŽāĻŋāĻāĻžāϰ ( m) |
|
 ā§.āϤāĻĄāĻŧāĻŋā§āĻā§āώā§āϤā§āϰ E āĻ āĻŦāĻŋāĻāĻŦ āĻĒāĻžāϰā§āĻĨāĻā§āϝ ÎV āĻāϰ āĻŽāϧā§āϝ⧠āϏāĻŽā§āĻĒāϰā§āĻ, |
ÎV = āĻŦāĻŋāĻāĻŦ āĻĒāĻžāϰā§āϧāĻā§āϝ |
āĻā§āϞā§āĻ (V) āĻŽāĻŋāĻāĻžāϰ (m) |
|
Â ā§Ž.āĻĒāϰāĻŋāĻŦāĻžāĻšā§āϰ āϧāĻžāϰāĻāϤā§āĻŦ, $C=\frac{Q}{v}$ |
 C = āϧāĻžāϰāĻāϤā§āĻŦ |
 āĻĢā§āϝāĻžāϰāĻžāĻĄ (F) |
|
Â ā§¯.āĻā§āϞāĻā§āϝāĻŧ āĻĒāϰāĻŋāĻŦāĻžāĻšā§āϰ āϧāĻžāϰāĻāϤā§āĻŦ, |
 r = āĻā§āϞāĻā§āϰ āĻŦā§āϝāĻžāϏāĻžāϰā§āϧ |
 āĻŽāĻŋāĻāĻžāϰ (m) |
|
Â ā§§ā§Ļ.āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āĻĒāĻžāϤ āϧāĻžāϰāĻā§āϰ āϧāĻžāϰāĻāϤā§āĻŦ, |
 d = āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āĻĻā§āĻāĻŋ āĻĒāĻžāϤā§āϰ āĻĻā§āϰāϤā§āĻŦ |
 āĻŽāĻŋāĻāĻžāϰ (m) |
|
Â ā§§ā§§.āĻ āϏā§āĻŽ āĻšāϤ⧠āĻāĻāĻ āϧāύāĻžāϤā§āĻŽāĻ āĻāĻžāϰā§āĻāĻā§ āϤāĻĄāĻŧāĻŋā§āĻā§āώā§āϤā§āϰā§āϰ āĻā§āύ⧠āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻāύāϤ⧠āĻā§āϤ āĻāĻžāĻ, W = Và Q |
 W = āĻāĻžāĻā§āϰ āĻĒāϰāĻŋāĻŽāĻžāĻŖ |
 āĻā§āϞ ( j) |
|
⧧⧍.āĻļā§āϰā§āĻŖā§ āϏāĻŽāĻŦāĻžāϝāĻŧā§āϰ āϤā§āϞā§āϝ āϧāĻžāϰāĻāϤā§āĻŦ, $\frac{1}{\mathrm{C}_{\mathrm{s}}}=\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}} \ldots \ldots \ldots+\frac{1}{\mathrm{C}_{\mathrm{n}}}$ |
 Cs = āĻļā§āϰā§āĻŖā§ āϏāĻŽāĻŦāĻžāϝāĻŧā§ āϝā§āĻā§āϤ āϧāĻžāϰāĻāĻā§āϞā§āϰ āϧāĻžāϰāĻāϤā§āĻŦ |
 āĻĢā§āϝāĻžāϰāĻžāĻĄā§ (F) |
|
Â ā§§ā§Š.āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāĻŽāĻŦāĻžāϝāĻŧā§āϰ āϤā§āϞā§āϝ āϧāĻžāϰāĻāϤā§āĻŦ, Cp = C1 + C2 + âĻâĻ + Cn |
 Cp = āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāĻŽāĻŦāĻžāϝāĻŧā§ āϝā§āĻā§āϤ āϧāĻžāϰāĻāĻā§āϞā§āϰ āϧāĻžāϰāĻāϤā§āĻŦ |
 āĻĢā§āϝāĻžāϰāĻžāĻĄā§ (F) |
|
Â ā§§ā§Ē.āĻāĻžāϰā§āĻāĻŋāϤ āϧāĻžāϰāĻā§āϰ āϏā§āĻĨāĻŋāϤāĻŋāĻļāĻā§āϤāĻŋ, |
 Ep = āϏāĻā§āĻāĻŋāϤ āĻļāĻā§āϤāĻŋ |
 āĻā§āϞ ( J) |
|
Â ā§§ā§Ģ.āϝā§āĻā§āύ āĻŽāĻžāϧā§āϝāĻŽā§āϰ āĻā§āĻĻāύ āϝā§āĻā§āϝāϤāĻž, |
 k = āϤāĻĄāĻŧāĻŋā§ āĻŽāĻžāϧā§āϝāĻŽāĻžāĻā§āĻ |
 |
Â
Â
āϏā§āĻĨāĻŋāĻ°Â āϤāĻĄāĻŧāĻŋā§Â āĻ āϧā§āϝāĻžāϝāĻŧā§Â āϝā§Â āϏāĻŦ āĻŦāĻŋāώāϝāĻŧā§Â āϏā§āĻĒāώā§āĻ āϧāĻžāϰāĻŖāĻžÂ āĻĨāĻžāĻāϤā§Â āĻšāĻŦā§
Â
- āĻāĻžāϰā§āĻā§āϰ āϏāĻāĻā§āϝāĻž
- āĻŽāĻžāϧā§āϝāĻŽ
- āĻāϰā§āώāĻŖāĻāύāĻŋāϤ āϤāĻĄāĻŧāĻŋā§ -āĻāϰ āĻŦā§āϝāĻžāĻā§āϝāĻž
- āϤāĻĄāĻŧāĻŋā§ āĻāĻŦā§āĻļ
- āϤāĻĄāĻŧāĻŋā§ āĻāĻŦā§āĻļā§āϰ āĻŦā§āĻļāĻŋāώā§āĻā§āϝ
- āĻŦāĻŋāĻāϰā§āώāĻŖ āϤāĻĄāĻŧāĻŋā§āĻĒā§āϰāϏā§āϤāϤāĻžāϰ āϏā§āύāĻŋāĻļā§āĻāĻŋāϤāϤāϰ āĻĒāϰā§āĻā§āώāĻž
- āĻāĻžāϰā§āĻāĻŋāϤ āĻĒāϰāĻŋāĻŦāĻžāĻšā§āϤ⧠āĻāĻžāϰā§āĻā§āϰ āĻ āĻŦāϏā§āĻĨāĻžāύ
- āĻāĻžāϰā§āĻā§āϰ āϤāϞ āĻāĻŖāϤā§āĻŦ
- āĻŦāĻŋāύā§āĻĻā§ āĻāĻžāϰā§āĻ
- āĻā§āϞāĻŽā§āĻŦā§ āϏā§āϤā§āϰ
- 1 āĻā§āϞāĻŽā§āĻŦ āĻāϰ āϏāĻāĻā§āĻāĻž
- āĻĒāϰāĻŽ āĻāĻžāϰā§āĻ
- āϤāĻĄāĻŧāĻŋā§ āĻĒā§āϰāĻžāĻŦāϞā§āϝ
- āϤāĻĄāĻŧāĻŋā§ āĻĢā§āϞāĻžāĻā§āϏ
- āϤāĻĄāĻŧāĻŋā§ āĻŦāϞāϰā§āĻāĻžāϰ āϧāϰā§āĻŽ
- āϤāĻĄāĻŧāĻŋā§ āĻŦāĻŋāĻāĻŦ
- āĻŦāĻŋāĻāĻŦ āĻĒāĻžāϰā§āĻĨāĻā§āϝ
- āĻāϞā§āĻāĻā§āϰāύ āĻā§āϞā§āĻ
- āĻĒā§āĻĨāĻŋāĻŦā§āϰ āĻŦāĻŋāĻāĻŦ
- āϏāĻŽāĻŦāĻŋāĻāĻŦ āϤāϞ
- āϤāĻĄāĻŧāĻŋā§ āϧāĻžāϰāĻāϤā§āĻŦ
- āϧāĻžāϰāĻāϤā§āĻŦ āϝ⧠āϏāĻŦ āĻŦāĻŋāώāϝāĻŧā§āϰ āĻāĻĒāϰ āύāĻŋāϰā§āĻāϰ āĻāϰā§
- āĻĒāϰāĻžāĻŦā§āĻĻā§āϝā§āϤāĻŋāĻ āϧā§āϰā§āĻŦāĻ āĻŦāĻž āϤāĻĄāĻŧāĻŋā§ āĻŽāĻžāϧā§āϝāĻŽāĻžāĻā§āĻ
Â
Â
āĻāĻžāĻŖāĻŋāϤāĻŋāĻ āϏāĻŽāϏā§āϝāĻžÂ āĻ āϏāĻŽāĻžāϧāĻžāύāĻ
Â
1. āĻŦāĻžāϤāĻžāϏ⧠100 c āĻāĻžāϰā§āĻ āĻšāϤ⧠10nm āĻĻā§āϰ⧠āĻā§āύ āĻŦāĻŋāύā§āĻĻā§āϤ⧠āϤāĻĄāĻŧāĻŋā§ āĻĒā§āϰāĻžāĻŦāϞā§āϝ āĻāϤ ?
Â
āϏāĻŽāĻžāϧāĻžāύāĻ
āĻāĻāĻžāύā§, $q=100 \mathrm{c} ; \mathrm{r}=10 \mathrm{~nm}=10 \times 10^{-9} \mathrm{~m} \cdot \frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{c}^{-2}$
E = ?
â´Â $\mathrm{E}=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{\mathrm{Q}}{\mathrm{r}^{2}}=9 \times 10^{19} \mathrm{Nc}^{-1}$ (Answer)
Â
2.. āĻŦāĻžāϝāĻŧā§ āĻŽāĻžāϧā§āϝāĻŽā§ āĻĻā§āĻāĻŋ āĻāϞāĻĢāĻž āĻāĻŖāĻŋāĻāĻž 10-13 māĻĻā§āϰ⧠āĻ āĻŦāϏā§āĻĨāĻžāύ āĻāϰāϞ⧠āϤāĻžāĻĻā§āϰ āĻŽāϧā§āϝāĻāĻžāϰ āĻŦāĻŋāĻāϰā§āώāĻŖ āĻŦāϞ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰāĨ¤
Â
āϏāĻŽāĻžāϧāĻžāύāĻ
Â
āĻāĻāĻžāύā§,q1= q2 = 3.2 à 10-19 c ;Â
r = 10-13m ; Â $\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{c}^{-2}$ ;
F = ?
â´Â $\mathrm{F}=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{\mathrm{Q}_{1} \mathrm{Q}_{2}}{\mathrm{r}^{2}}=9.21 \times 10^{-2} \mathrm{~N}$ (Answer)
Â
3. āĻŦāĻžāϝāĻŧā§āϤ⧠āĻĻā§âāĻāĻŋ āϧāύāĻžāϤā§āĻŽāĻ āĻāĻžāϰā§āĻā§āϰ āĻŽāϧā§āϝāĻŦāϰā§āϤ⧠āĻĻā§āϰāϤā§āĻŦ 0.1māĻāĻŦāĻ āϤāĻžāĻĻā§āϰ āĻŽāϧā§āϝāĻŦāϰā§āϤ⧠āĻŦāĻŋāĻāϰā§āώāĻŖ āĻŦāϞ 9Ã10-5 NāĨ¤ āĻāĻžāϰā§āĻ āĻĻā§âāĻāĻŋāϰ āĻāĻāĻāĻŋ āĻ āĻĒāϰāĻāĻŋāϰ āĻāĻžāϰāĻā§āĻŖ āĻšāϞ⧠āϤāĻžāĻĻā§āϰ āĻĒāϰāĻŋāĻŽāĻžāĻŖ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰāĨ¤
āϏāĻŽāĻžāϧāĻžāύāĻ
āϧāϰ āϝāĻžāĻ, q1 = q;
       q2 = 4q;
āĻĻā§āĻāϝāĻŧāĻž āĻāĻā§, $r=0.1 \mathrm{~m} ; \frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{c}^{-2}$
$\therefore \mathrm{F}=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{\mathrm{Q}_{1} \mathrm{Q}_{2}}{\mathrm{r}^{2}}=9 \times 10^{9} \times \frac{\mathrm{q} \times 4 \mathrm{q}}{(0.1)^{2}}$
$\Rightarrow 9 \times 10^{-5}=9 \times 10^{9} \times \frac{4 \mathrm{q}^{2}}{(0.1)^{2}}$
â´ q = 5Ã10-9 N = q1Â Â Â (Answer) ;
  q2 = 4q = 20 à 10-9 N  (Answer) .
Â
4. 0.002 kg āĻāϰā§āϰ āĻāĻāĻāĻŋ āĻļā§āϞāĻž āĻŦāϞ 10-4 āĻāĻžāϰā§āĻā§ āĻāĻžāϰā§āĻāĻŋāϤāĨ¤āĻļā§āϞāĻž āĻŦāϞāĻāĻŋāĻā§ āĻ āĻāĻŋāĻāϰā§āώ āĻā§āώā§āϤā§āϰ⧠āϏā§āĻĨāĻŋāϰ āϰāĻžāĻāϤ⧠āĻāĻŋ āĻĒāϰāĻŋāĻŽāĻžāĻŖ āĻā§āώā§āϤā§āϰā§āϰ āĻĒā§āϰāϝāĻŧā§āĻāύ ?
Â
āϏāĻŽāĻžāϧāĻžāύāĻ
āĻāĻāĻžāύā§, m = 0.002 kg ; q = 10-4 c ; g = 9.8 ms-2 ; E = ?
āĻŦāϏā§āϤā§āϰ āĻāĻāύ āĻ āϤāĻĄāĻŧāĻŋā§ āĻŦāϞ āϏāĻŽāĻžāύ āĻšāϞ⧠āĻŦāϏā§āϤ āϏā§āĻĨāĻŋāϰ āĻĨāĻžāĻāĻŦā§āĨ¤
â´ w = mg = 0.0196 N = F
āĻāĻŦāĻžāϰ, F = Eq â¨E = F /q = W/q = 196 NC-1 (Answer)
Â
5. āĻĻā§āĻāĻŋ āĻā§āϞāĻā§āϰ āĻŦā§āϝāĻžāϏāĻžāϰā§āϧ āϝāĻĨāĻžāĻā§āϰāĻŽā§ 0.01m āĻāĻŦāĻ 0.02māĨ¤ āĻāĻĻā§āϰ āĻā§ āϝāĻĨāĻžāĻā§āϰāĻŽā§ 50c āĻāĻŦāĻ 100c āĻāĻžāϰā§āĻā§ āĻāĻžāϰā§āĻāĻŋāϤ āĻāϰāĻž āĻšāϞāĨ¤ āĻā§āϞāĻ āĻĻā§âāĻāĻŋāϰ āĻāĻžāϰā§āĻā§āϰ āϤāϞ āĻāĻŖāϤā§āĻŦā§āϰ āĻ āĻŖā§āĻĒāĻžāϤ āĻāϤ ?
āϏāĻŽāĻžāϧāĻžāύāĻ
āĻāĻāĻžāύā§, r1 = 0.01m ;
Q1 = 50c ;
r2 = 0.02m ;
Q2 = 100 c ;
Ī1 :Ī2= ?
â´Â $\sigma_{1}=\frac{Q_{1}}{4 \pi r_{1}^{2}} \quad ; \quad \sigma_{2}=\frac{Q_{2}}{4 \pi r_{2}^{2}}$
$\frac{\sigma_{1}}{\sigma_{2}}=\frac{Q_{1}}{Q_{2}} \times \frac{r_{2}^{2}}{r_{1}^{2}}=\frac{2}{1}$
â´Ī1 : Ī2 = 2 : 1Â Â (Answer)
Â
6. 10cm āĻŦā§āϝāĻžāϏāĻžāϰā§āϧā§āϰ āĻāĻāĻāĻŋ āĻŦā§āϤā§āϤā§āϰ āĻĒāϰāĻŋāϧāĻŋāϤ⧠10c āĻŽāĻžāύā§āϰ āĻĻā§âāĻāĻŋ āϧāύāĻžāϤā§āĻŽāĻ āĻāĻžāϰā§āĻ āϏā§āĻĨāĻžāĻĒāύ āĻāϰāĻž āĻšāϝāĻŧā§āĻā§ āĨ¤āĻŦā§āϤā§āϤā§āϰ āĻā§āύā§āĻĻā§āϰ⧠āϤāĻĄāĻŧāĻŋā§ āĻŦāĻŋāĻāĻŦā§āϰ āĻŽāĻžāύ āĻāϤ ?
Â
āϏāĻŽāĻžāϧāĻžāύāĻ
āĻāĻāĻžāύā§,
q = (10+10)c = 20c;
r = 10 cm = 0.1m; ;
$\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{c}^{-2}$;
V = ?
$\therefore \mathrm{V}=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{\mathrm{Q}}{\mathrm{R}}=1.8 \times 10^{12} \mathrm{~V}$ (Answer)
Â
         Â
7. āĻĻā§âāĻāĻŋ āĻā§āώā§āĻĻā§āϰ āĻā§āϞāĻāĻā§ 16c āĻāĻŦāĻ 25c āĻāĻžāϰā§āĻ āĻĒā§āϰāĻĻāĻžāύ āĻāϰāĻž āĻšāϞ āĨ¤āϝāĻĻāĻŋ āĻŦāϏā§āϤ⧠āĻĻā§âāĻāĻŋāϰ āĻŽāϧā§āϝāĻŦāϰā§āϤ⧠āĻĻā§āϰāϤā§āĻŦ 0.25m āĻšāϝāĻŧ āϤāĻŦā§ āϤāĻžāĻĻā§āϰ āϏāĻāϝā§āĻāĻ āϏāϰāϞāϰā§āĻāĻžāϰ āĻā§āύ āĻŦāĻŋāύā§āĻĻā§āϤ⧠āύāĻŋāώā§āĻā§āϰāĻŋāϝāĻŧ āĻŦāĻŋāύā§āĻĻā§ āĻĒāĻžāĻāϝāĻŧāĻž āϝāĻžāĻŦā§ ?
āϏāĻŽāĻžāϧāĻžāύāĻ
āĻāĻāĻžāύā§,
q1 = 16 c ;
q2 = 25c ;
r = 0.25m ;
x = ?                 Â
āϧāϰāĻŋ,āĻā§āϞāĻ āĻĻā§âāĻāĻŋ āϝāĻĨāĻžāĻā§āϰāĻŽā§ A āĻāĻŦāĻ B
A āĻĨā§āĻā§ x āĻĻā§āϰāϤā§āĻŦā§ āύāĻŋāώā§āĻā§āϰāĻŋāϝāĻŧ āĻŦāĻŋāύā§āĻĻā§ āĻĒāĻžāĻāϝāĻŧāĻž āϝāĻžāĻŦā§ āĻ
āϰā§āĻĨāĻžā§ āĻ āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻāĻāϝāĻŧ āĻāĻžāϰā§āĻā§āϰ āĻāύā§āϝ āĻĒā§āϰāĻžāĻŦāϞā§āϝā§āϰ āĻŽāĻžāύ āϏāĻŽāĻžāύ āĻšāĻŦā§ āĨ¤
$\therefore \frac{1}{4 \pi \epsilon_{0}} \cdot \frac{\mathrm{q}_{1}}{\mathrm{x}^{2}}=\frac{1}{4 \pi \epsilon_{0}} \times \frac{\mathrm{q}_{2}}{(0.25-\mathrm{x})^{2}}$
$\Rightarrow \frac{16}{x^{2}}=\frac{25}{(0.25-x)^{2}} \Rightarrow\left(\frac{0.25-x}{x}\right)^{2}=\frac{25}{16}=\left(\frac{5}{4}\right)^{2}$
$\Rightarrow \frac{0.25-x}{x}=\frac{5}{4}$
â´ x = 0.11 m (Ans)
Â
⨠(extension) :āϏāĻāϝā§āĻāĻ āϏāϰāϞāϰā§āĻāĻžāϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻĒā§āϰāĻžāĻŦāϞā§āϝ āĻāϤ ?
# āĻĻā§āĻāĻŋ āĻāĻžāϰā§āĻā§āϰ āϏāĻāϝā§āĻāĻ āϏāϰāϞāϰā§āĻāĻžāϰ āϝā§āĻā§āύ āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻĒā§āϰāĻžāĻŦāϞā§āϝ āĻšāĻŦā§ āĻāĻžāϰā§āĻ āĻĻā§āĻāĻŋ āĻĻā§āĻŦāĻžāϰāĻž āϏā§āώā§āĻ āĻĒā§āϰāĻžāĻŦāϞā§āϝā§āϰ āĻŦā§āĻāĻāĻŖāĻŋāϤāĻŋāĻ āϝā§āĻāĻĢāϞ āĨ¤
Â
āĻāĻāĻžāύā§,
$\mathrm{E}=\mathrm{E}_{1} \sim \mathrm{E}_{1}=\frac{1}{4 \pi \epsilon_{0}} \cdot\left(\frac{\mathrm{q}_{1}}{\mathrm{r}^{2} /_{4}} \sim \frac{\mathrm{q}_{2}}{\mathrm{r}^{2} / 4}\right)=5.184 \times 10^{12}$ (Answer)
Â
8. āĻāĻāĻāĻŋ āϏā§āώāĻŽ āϤāĻĄāĻŧāĻŋā§āĻā§āώā§āϤā§āϰā§Â āĻŦā§āϝāĻŦāϧāĻžāύ⧠āĻ āĻŦāϏā§āĻĨāĻŋāϤ āĻĻā§âāĻāĻŋ āĻŦāĻŋāύā§āĻĻā§āϰ āĻŦāĻŋāĻāĻŦ āĻĒāĻžāϰā§āĻĨāĻā§āϝ 200V āĨ¤ āϤāĻĄāĻŧāĻŋā§ āĻā§āώā§āϤā§āϰā§āϰ āĻĒā§āϰāĻžāĻŦāϞā§āϝ āĻāϤ ?
Â
āϏāĻŽāĻžāϧāĻžāύāĻ
āĻāĻāĻžāύā§,
V = 200 V ;
d =Â 50 cm ;
E = ?
ⴠV = Ed ⨠E = V / d = 400 Vm-1  (Ans) .
Â
9. 10V āĻāϰ āĻāĻāĻāĻŋ āĻŦā§āϝāĻžāĻāĻžāϰāĻŋāϰ āĻāĻ āĻĒā§āϰāĻžāύā§āϤ āĻšāϤ⧠āĻ āύā§āϝ āĻĒā§āϰāĻžāύā§āϤ⧠60c āĻāĻžāϰā§āĻ āĻĒāϰāĻŋāĻŦāĻžāĻšāĻŋāϤ āĻāϰāϤ⧠āĻāϤ āĻāĻžāĻ āĻāϰāϤ⧠āĻšāĻŦā§ ?
Â
āϏāĻŽāĻžāϧāĻžāύāĻ
āĻāĻāĻžāύā§,
VB â VA Â = V = 10 V ;Â q = 60 c ; W = ?
Â
â´ W = Vq = 600 j (Ans)
Â
10. āĻĻā§āĻāĻŋ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϧāĻžāϤāĻŦ āĻĒāĻžāϤā§āϰ āĻŽāϧā§āϝ⧠150 V āĻŦāĻŋāĻāĻŦ āĻĒā§āϰāϝāĻŧā§āĻ āĻāϰāĻž āĻšāϞ āĨ¤āϤāĻžāĻĻā§āϰ āĻŽāϧā§āϝāĻŦāϰā§āϤ⧠āϏā§āĻĨāĻžāύā§āϰ āϤāĻĄāĻŧāĻŋā§ āĻĒā§āϰāĻžāĻŦāϞā§āϝ 5000Vm-1 āĻšāϞ⧠āĻĒāĻžāϤ āĻĻā§âāĻāĻŋāϰ āĻĻā§āϰāϤā§āĻŦ āĻāϤ ?
Â
āϏāĻŽāĻžāϧāĻžāύāĻ
           āĻāĻāĻžāύā§, V = 150v ; E = 5000 Vm-1 ; d = ?
Â
          ⴠV = Ed ⨠d = V/ E = 0.03 m (Ans).
Â
11. 0.20 m āĻŦāĻžāĻšā§ āĻĻā§āϰā§āĻā§āϝāϰ āĻāĻāĻāĻŋ āĻŦāϰā§āĻāĻā§āώā§āϤā§āϰā§āϰ āϤāĻŋāύ āĻā§āĻŖāĻžāϝāĻŧ āϝāĻĨāĻžāĻā§āϰāĻŽā§ +4 à 10-9 c, -4 à 10-9 c āĻāĻŦāĻ
+4 à 10-9 c āĻāϰ āϤāĻŋāύāĻāĻŋ āĻāĻžāϰā§āĻ āϰāĻžāĻāĻž āĻšāϞ āĨ¤āĻ
āĻĒāϰ āĻā§āύāĻžāϰ āĻŦā§āĻĻā§āϝā§āϤāĻŋāĻ āĻŦāĻŋāĻāĻŦ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰ āĨ¤
Â
āϏāĻŽāĻžāϧāĻžāύāĻ
āĻāĻāĻžāύā§, q1 = +4 à 10-9 c ; r1 = 0.2 m
          q3 = +4 à 10-9 c ; r1 = 0.2 m
     Â
      $\therefore \mathrm{V}_{\mathrm{A}}=\frac{1}{4 \pi \epsilon_{0}}\left[\frac{\mathrm{q}_{1}}{\mathrm{r}_{1}}+\frac{\mathrm{q}_{2}}{\mathrm{r}_{2}}+\frac{\mathrm{q}_{3}}{\mathrm{r}_{3}}\right]$
      $=9 \times 10^{9}\left[\frac{4 \times 10^{-9}}{0.2}-\frac{4 \times 10^{-9}}{0.283}+\frac{4 \times 10^{-9}}{0.2}\right]=233 \mathrm{~V}$ (Answer)
Â
12. 2m āĻŦāĻžāĻšā§ āĻŦāĻŋāĻļāĻŋāώā§āĻ āĻāĻāĻāĻŋ āĻŦāϰā§āĻāĻā§āώā§āϤā§āϰā§āϰ āĻā§āĻŖāĻžāϝāĻŧ 2 à 10-9 c āĻāĻžāϰā§āĻ āϏā§āĻĨāĻžāĻĒāύ āĻāϰāĻž āĻšāϞ āĨ¤āĻŦāϰā§āĻāĻā§āώā§āϤā§āϰā§āϰ āĻā§āύā§āĻĻā§āϰ⧠āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰ āĨ¤
Â
āϏāĻŽāĻžāϧāĻžāύāĻ
āĻāĻāĻžāύā§, q = 2 à 10-9 c ;
$2 r=\sqrt{2^{2}+2^{2}} \Rightarrow r=\frac{\sqrt{8}}{2}=\frac{2 \sqrt{2}}{2}=\sqrt{2}$
$\therefore V=\frac{1}{4 \pi \epsilon_{0}}\left[\frac{q}{r}+\frac{q}{r}+\frac{q}{r}+\frac{q}{r}\right]$
$=\frac{1}{4 \pi \epsilon_{0}} \times \frac{4 q}{r} \quad[$ short $-\mathrm{cut}]$
$=9 \times 10^{9} \times \frac{4 \times 2 \times 10^{-9}}{\sqrt{2}}=50.91 \mathrm{v} \mid$
13. āĻāĻāĻāĻŋ āĻŦāϰā§āĻāĻā§āώā§āϤā§āϰā§āϰ āϤāĻŋāύāĻāĻŋ āĻā§āĻŖāĻŋāĻ āĻŦāĻŋāύā§āĻĻā§āϤ⧠āϝāĻĨāĻžāĻā§āϰāĻŽā§ 2Ã10-9 c, 4 à 10-9c āĻāĻŦāĻ 8 à 10-9 c āĻāĻžāϰā§āĻ āϏā§āĻĨāĻžāĻĒāύ āĻāϰāĻž āĻšāϞ āĨ¤āĻāϰ āĻāϤā§āϰā§āĻĨ āĻā§āĻŖāĻŋāĻ āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻāϤ āĻāĻžāϰā§āĻ āϏā§āĻĨāĻžāĻĒāύ āĻāϰāϞ⧠āĻā§āύā§āĻĻā§āϰ⧠āĻŦāĻŋāĻāĻŦ āĻļā§āĻŖā§āϝ āĻšāĻŦā§ ?
Â
āϏāĻŽāĻžāϧāĻžāύāĻ
āϧāϰāĻŋ, āĻāϰā§āϤā§āĻĨ āĻŦāĻŋāύā§āĻĻā§āϤ⧠q āĻāĻžāϰā§āĻ āϏā§āĻĨāĻžāĻĒāύ āĻāϰāĻž āĻšāϝāĻŧā§āĻā§ āĨ¤ āĻāĻŦāĻ āĻŦāϰā§āĻā§āϰ āĻā§āύā§āĻĻā§āϰ āĻĨā§āĻā§ āĻā§āĻŖāĻŋāĻ āĻŦāĻŋāύā§āĻĻā§āϏāĻŽā§āĻšā§āϰ āĻĻā§āϰāϤā§āĻŦ 8 āĨ¤
$\therefore \frac{1}{4 \pi \epsilon_{0}}\left[\frac{\mathrm{q}_{1}}{\mathrm{r}}+\frac{\mathrm{q}_{2}}{\mathrm{r}}+\frac{\mathrm{q}_{3}}{\mathrm{r}}+\frac{\mathrm{q}}{\mathrm{r}}\right]=0$
⨠q1+ q2+ q3+ q = 0
â¨Â q = - (q1+ q2+ q3) [ shortcut ]
= -14 à 10-9  c  (Answer).
Â
14. 0.50 m āĻŦā§āϝāĻžāϏāĻžāϰā§āϧā§āϰ āĻāĻāĻāĻŋ āĻā§āϞāĻā§ āĻāĻžāϰā§āĻ āĻĻā§āϝāĻŧāĻž āĻāĻā§ āĨ¤āĻā§āϞāĻā§āϰ āĻā§āύā§āĻĻā§āϰ āĻšāϤ⧠0.40 āĻ 0.80m āĻĻā§āϰ⧠āĻŦāĻŋāύā§āĻĻā§āĻĻā§āĻŦāϝāĻŧā§ āĻŦāĻŋāĻāĻŦā§āϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰ āĨ¤
Â
āϏāĻŽāĻžāϧāĻžāύāĻ
     āĻāĻāĻžāύā§, âĩ 0.40 <  r ; r = 0.5 m ; q = 20 c
 $V=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{q}{r}$  [âĩ āĻā§āϞāĻā§āϰ āĻ
āĻā§āϝāύā§āϤāϰ⧠āϏāϰā§āĻŦāϤā§āϰ āĻŦāĻŋāĻāĻŦ āĻāϰ āĻĒā§āώā§āĻ ā§āϰ āĻŦāĻŋāĻāĻŦā§āϰ āϏāĻŽāĻžāύ ]
       = 9 à 10 9 à 20 / .5 = 3.6 à 1011 V (Ans)
āĻāĻŦāĻžāϰ , 0.80 > r
$\therefore \mathrm{V}=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{\mathrm{q}}{\mathrm{r}}=2.25 \times 10^{11} \mathrm{~V}$ (Answer)
15. āϤāĻŋāύāĻāĻŋ āϧāĻžāύāĻā§āϰ āϧāĻžāϰāĻāϤā§āĻŦ āϝāĻĨāĻžāĻā§āϰāĻŽā§ 3uF , 4uF āĻāĻŦāĻ 2uF āĨ¤āĻāĻĻā§āϰ āϤā§āϞā§āϝ āϧāĻžāϰāĻāϤā§āĻŦ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰ āĨ¤āĻ āϏāĻŽāĻŦāĻžāϝāĻŧ 300 V āĻŦāĻŋāĻāĻŦ āĻĒāĻžāϰā§āĻĨāĻā§āϝā§āϰ āĻā§āϏā§āϰ āϏāĻžāĻĨā§ āϝā§āĻā§āϤ āĻāϰāϞ⧠āĻāĻā§āϤ āϧāĻžāϰāĻā§ āϏāĻā§āĻāĻŋāϤ āĻāĻžāϰā§āĻ āĻ āĻļāĻā§āϤāĻŋāϰ āĻĒāϰāĻŋāĻŽāĻžāĻŖ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰ āĨ¤
āϏāĻŽāĻžāϧāĻžāύāĻ
āĻāĻāĻžāύā§,
C1 = 3uF , C2 = 4uF , C3 = 2uF
V = 300 V
$\therefore \frac{1}{c s}=\frac{1}{c_{1}}+\frac{1}{c_{2}}=\frac{c_{1}+c_{2}}{c_{1} c_{2}} \Rightarrow c s=\frac{c_{1}+c_{2}}{c_{1} c_{2}}=\frac{12}{7}$
â´ Cp = Cs + C3 = 12/ 7 + 2 = 3.71 uF
â´ Q = CV
= 3.71 Ã 10-6 Ã 300
= 1.114 Ã 10-3 Â CÂ Â (Answer)
$\therefore \mathrm{E}_{\mathrm{p}}=\frac{1}{2} \mathrm{QV}=\frac{1}{2} \times 1.114 \times 10^{-3} \times 300=0.167 \mathrm{j}$ (Answer)
16. āĻāĻāĻāĻŋ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āĻĒāĻžāϤ āϧāĻžāϰāĻā§āϰ āĻĒā§āϰāϤāĻŋ āĻĒāĻžāϤā§āϰ āĻŦā§āϝāĻžāϏāĻžāϰā§āϧ 0.1 māĨ¤ āĻĒāĻžāϤāĻĻā§āĻŦāϝāĻŧā§āϰ āĻŽāϧā§āϝāĻāĻžāϰ āĻĻā§āϰāϤā§āĻŦ 1à 10-3 m āĻāĻŦāĻ āĻŦāĻŋāĻāĻŦ āĻĒāĻžāϰā§āĻĨāĻā§āϝ 100 V āĨ¤(â °) āϧāĻžāϰāĻāĻāĻŋāϰ āϧāĻžāϰāĻāϤā§āĻŦ (â ą) āĻĒāĻžāϤāĻĻā§āĻŦāϝāĻŧā§āϰ āĻŽāϧā§āϝāĻāĻžāϰ āĻŦā§āĻĻā§āϝā§āϤāĻŋāĻ āĻĒā§āϰāĻžāĻŦāϞā§āϝ (â ˛)āĻĒāĻžāϤāĻĻā§āĻŦāϝāĻŧā§āϰ āϏāĻā§āĻāĻŋāϤ āĻļāĻā§āϤāĻŋ (â ŗ)āĻāĻāĻ āĻāϝāĻŧāϤāύ⧠āϏāĻā§āĻāĻŋāϤ āĻļāĻāĻŋāϤ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰ āĨ¤
Â
āϏāĻŽāĻžāϧāĻžāύāĻ
āĻāĻāĻžāύā§, r = 0.1 m â´ A = Īr2 ; d = 1à 10-3 m ; V = 100v
(i) $\mathrm{C}=\frac{\epsilon_{0} \mathrm{~A}}{\mathrm{~d}}=\frac{\epsilon_{0} \pi \mathrm{r}^{2}}{\mathrm{~d}}=2.78 \times 10^{-10} \mathrm{~F}$ (Answer)
(ii) $\mathrm{E}=\frac{\mathrm{V}}{\mathrm{d}}=10^{5} \mathrm{~V}$ (Answer)
(iii) $\mathrm{E}_{\mathrm{p}}=\frac{1}{2} \mathrm{CV}^{2}=1.39 \times 10^{-6} \mathrm{j}$ (Answer)
(iv) $u=\frac{1}{2} \epsilon_{0} E^{2}=0.04427 \frac{j}{m^{3}}$ (Answer)
17. 0.02 m āĻŦā§āϝāĻžāϏāĻžāϰā§āϧ āĻŦāĻŋāĻļāĻŋāώā§āĻ 64āĻāĻŋ āĻā§āϞāĻžāĻāĻžāϰ āĻĢā§āĻāĻāĻžāĻĻā§āϰ āĻāĻāϤā§āϰāĻŋāϤ āĻāϰ⧠āĻāĻāĻāĻŋ āĻŦāĻĄāĻŧ āĻĢā§āĻāĻžāϝāĻŧ āĻĒāϰāĻŋāĻŖāϤ āĻāϰāĻž āĻšāϞ āĨ¤āϝāĻĻāĻŋ āĻĒā§āϰāϤāĻŋ āĻĢā§āĻāĻžāϝāĻŧ 1c āĻāĻžāϰā§āĻ āĻŦāĻŋāĻĻā§āϝāĻŽāĻžāύ āĻĨāĻžāĻā§ āϤāĻŦā§ āĻŦāĻĄāĻŧ āĻĢā§āĻāĻžāϰ āĻŦāĻŋāĻāĻŦ āĻ āϧāĻžāϰāĻāϤā§āĻŦ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰ āĨ¤
Â
āϏāĻŽāĻžāϧāĻžāύāĻ
āĻāĻāĻžāύā§, āĻĒā§āϰāϤāĻŋ āĻĢā§āĻāĻāĻžāϰ āĻŦā§āϝāĻžāϏāĻžāϰā§āϧ , r = 0.02 m
āϏāĻāĻā§āϝāĻž , n = 64
āϧāϰāĻŋ,āĻŦāĻĄāĻŧ āĻĢā§āĻāĻžāϰ āĻŦā§āϝāĻžāϏāĻžāϰā§āϧ = R
āĻāĻžāϰā§āĻ, Q = 64 à 1c = 64 c
āĻāĻāύ,  $\frac{4}{3} \pi R^{3}=n \times \frac{4}{3} \pi r^{3}$
$\Rightarrow \mathrm{R}^{3}=\mathrm{nr}^{3}$
$\Rightarrow\left(\frac{\mathrm{R}}{\mathrm{r}}\right)^{3}=\mathrm{n}$
$\Rightarrow \frac{\mathrm{R}}{\mathrm{r}}=\sqrt[3]{\mathrm{n}}$
$\Rightarrow \mathrm{R}=\sqrt[3]{\mathrm{n}} \times \mathrm{r} \quad[$ short $-\mathrm{cut}]$
$\therefore \mathrm{R}=\sqrt[3]{64} \times \mathrm{r}=4 \times 0.02=0.08 \mathrm{~m}$
â´ āĻŦāĻĄāĻŧ āĻĢā§āĻāĻžāϰ āϧāĻžāϰāĻāϤā§āĻŦ, C = 4ĪĪĩ0 à R
                                 = 4 à 3.1416 à 8.854 à 10-12 à 0.08
                                 = 8.9 à 10-12 F
â´ āĻŦāĻĄāĻŧ āĻĢā§āĻāĻžāϰ āĻŦāĻŋāĻāĻŦ,
$\mathrm{V}=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{\mathrm{Q}}{\mathrm{r}}=7.2 \times 10^{12} \mathrm{~V}$ (Answer)
Â
Â