āϏāĻžāϧāĻžāϰāĻŖ āϧāĻžāϰāĻŖāĻžÂ
Â
āĻŦāĻšā§āĻĒāĻĻā§ āĻ āϤāĻžāϰ āĻāĻžāϤ (Polynomial and its degree) : āĻŦāĻšā§āĻĒāĻĻā§ āĻāĻ āϧāϰāύā§āϰ āĻŦā§āĻāĻāĻžāĻŖāĻŋāϤāĻŋāĻ āϰāĻžāĻļāĻŋ (Expression) āĨ¤ āĻāϤ⧠āĻāĻ āĻŦāĻž āĻāĻāĻžāϧāĻŋāĻ āĻĒāĻĻ (element) āĻĨāĻžāĻāϤ⧠āĻĒāĻžāϰ⧠āĨ¤ āĻāĻ āĻŦāĻž āĻāĻāĻžāϧāĻŋāĻ āĻāϞāĻā§āϰ (variable) āĻā§āĻŦāϞāĻŽāĻžāϤā§āϰ āϧāύāĻžāϤā§āĻŽāĻ āĻĒā§āϰā§āĻŖāϏāĻžāĻāĻā§āϝāĻŋāĻ āĻāĻžāϤ āĻ āĻā§āύ āϧā§āϰā§āĻŦāĻā§āϰ (constant) āĻā§āĻŖāĻĢāϞ āĻšāϞ āĻŦāĻšā§āĻĒāĻĻā§āϰ āĻŦāĻŋāĻāĻŋāύā§āύ āĻĒāĻĻ āĨ¤ āĻŦāĻšā§āĻĒāĻĻā§āϰ āĻĒāĻĻāĻā§āϞā§āϰ āϏāϰā§āĻŦā§āĻā§āĻ āĻāĻžāϤāĻā§ āĻŦāĻšā§āĻĒāĻĻā§ā§ āĻāĻžāϤ (Degree) āĻŦāϞ⧠āĨ¤
āĻāĻ āĻāϞāĻā§āϰ āĻŦāĻšā§āĻĒāĻĻā§ : āĻāϰ āĻĒā§āϰāϤāĻŋ āĻĒāĻĻā§ āĻļā§āϧā§āĻŽāĻžāϤā§āϰ āĻāĻāĻāĻŋ āĻāϞāĻā§āϰ āĻŦāĻŋāĻāĻŋāύā§āύ āĻĒā§āϰā§āĻŖ āϏāĻžāĻāĻā§āϝāĻŋāĻ āĻāĻžāϤ āĻ āϧā§āϰā§āĻŦāĻ āĻĨāĻžāĻā§ āĨ¤ āϝā§āĻŽāύ :
a0xn+a1xn-1+a2xn-2+ ......+an āĻāĻāĻāĻŋ āĻāĻ āĻāϞāĻā§āϰ āĻŦāĻšā§āĻĒāĻĻā§ āϝā§āĻāĻžāύ⧠x āĻāϞāĻ āĨ¤ a 0, a1, a2, ...... an â R āĻšāϞ āϧā§āϰā§āĻŦāĻ āϝā§āĻāĻžāύ⧠a0 â 0 āĨ¤ n āĻšāϞ x āĻāϰ āϏāϰā§āĻŦāĻžāϧāĻŋāĻ āĻāĻžāϤ āĨ¤ āϞāĻā§āώāĻŖā§ā§, x āĻāϰ āĻāĻžāϤ āĻāĻāύāĻ āĻāĻŖāĻžāϤā§āĻŽāĻ āĻšāϤ⧠āĻĒāĻžāϰāĻŦā§ āύāĻž āĨ¤ a0 āĻā§ āĻŽā§āĻā§āϝ āϏāĻšāĻ āĻŦāϞāĻž āĻšā§ āĨ¤ āĻāĻ āĻāϞāĻ x-āĻŦāĻŋāĻļāĻŋāώā§āĻ āĻāϰā§āĻĒ āĻŦāĻšā§āĻĒāĻĻā§ āϰāĻžāĻļāĻŋāĻā§ f(x) āĻĻā§āĻŦāĻžāϰāĻžāĻ āĻĒā§āϰāĻāĻžāĻļ āĻāϰāĻž āĻšā§ āĨ¤
āĻŦāĻšā§āĻĒāĻĻā§ āϏāĻŽā§āĻāϰāĻŖ (Polynomial Equation) : a0xn+a1xn-1+a2xn-2+ ......+a n = 0 āĻāĻāĻžāϰā§āϰ āϏāĻŽā§āĻāϰāĻŖāĻā§ āĻŦāĻšā§āĻĒāĻĻā§ āϏāĻŽā§āĻāϰāĻŖ āĻŦāϞ⧠āĨ¤
x āĻāϰ āϝ⧠āĻŽāĻžāύāĻā§āϞā§āϰ āĻāύā§āϝ āĻŦāĻšā§āĻĒāĻĻā§ āϏāĻŽā§āĻāϰāĻŖāĻāĻŋ āϏāĻŋāĻĻā§āϧ āĻšā§, āĻ āϰā§āĻĨāĻžā§ āĻŦāĻšā§āĻĒāĻĻā§ āϰāĻžāĻļāĻŋāĻāĻŋāϰ āĻŽāĻžāύ āĻļā§āύā§āϝ āĻšā§, āĻ āĻŽāĻžāύāĻā§āϞā§āĻā§ āĻŦāĻšā§āĻĒāĻĻā§ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞ (Roots) āĻŦāϞāĻž āĻšā§ āĨ¤
n = 1,2,3 āĻāϰ āĻāύā§āϝ āĻŦāĻšā§āĻĒāĻĻā§ āϏāĻŽā§āĻāϰāĻŖāĻāĻŋāĻā§ āϝāĻĨāĻžāĻā§āϰāĻŽā§ āϏāϰāϞ āϏāĻŽā§āĻāϰāĻŖ (Linear equation), āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖ (quadratic equation), āϤā§āϰāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖ (cubic equation) āĻŦāϞāĻž āĻšā§ āĨ¤
āĻŦāĻšā§āĻĒāĻĻā§ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻāĻĒāĻĒāĻžāĻĻā§āϝ (Theorems of polynomial equations) :
 i. āĻŦā§āĻāĻāĻŖāĻŋāϤā§āϰ āĻŽā§āϞāĻŋāĻ āĻāĻĒāĻĒāĻžāĻĻā§āϝ (Fundamental theorem of algebra) : āĻĒā§āϰāϤāĻŋāĻāĻŋ āĻŦāĻšā§āĻĒāĻĻā§ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻ āύā§āϤāϤ āĻāĻāĻāĻŋ āĻŽā§āϞ (āĻŦāĻžāϏā§āϤāĻŦ āĻāĻŋāĻāĻŦāĻž āĻāĻāĻŋāϞ) āĻĨāĻžāĻā§ āĨ¤
 ii. n āĻāĻžāϤ āĻŦāĻŋāĻļāĻŋāώā§āĻ āĻŦāĻšā§āĻĒāĻĻā§ āϏāĻŽā§āĻāϰāĻŖā§ n āϏāĻāĻā§āϝāĻ āĻŽā§āϞ āĻāĻā§ (āĻŦāĻžāϏā§āϤāĻŦ āĻāĻŋāĻāĻŦāĻž āĻāĻāĻŋāϞ) āĨ¤ āϤāĻŦā§ āϏāĻŦ āĻŽā§āϞāĻā§āϞ⧠āĻāĻŋāύā§āύ āύāĻžāĻ āĻšāϤ⧠āĻĒāĻžāϰ⧠āĨ¤
 iii. āĻāĻžāĻāĻļā§āώ āĻāĻĒāĻĒāĻžāĻĻā§āϝ (Remainder theorem) : āϝāĻĻāĻŋ āĻā§āύ āĻŦāĻšā§āĻĒāĻĻā§ f(x) āĻā§ x-a āĻĻā§āĻŦāĻžāϰāĻž āĻāĻžāĻ āĻāϰāĻž āĻšā§, āϤāĻŦā§ āĻāĻžāĻāĻļā§āώ āĻšāĻŦā§ f(a) āĨ¤
 iv. āĻā§āĻĒāĻžāĻĻāĻ āĻāĻĒāĻĒāĻžāĻĻā§āϝ (Factor theorem) : āϝāĻĻāĻŋ a, āĻŦāĻšā§āĻĒāĻĻā§ āϏāĻŽā§āĻāϰāĻŖ f(x) āĻāϰ āĻāĻāĻāĻŋ āĻŽā§āϞ āĻšā§ āϤāĻŦā§ (x-a) āĻŦāĻšā§āĻĒāĻĻā§ f(x) āĻāϰ āĻāĻāĻāĻŋ āĻā§āĻĒāĻžāĻĻāĻ āĻšāĻŦā§ āĨ¤
 v. āĻ āύā§āĻŦāύā§āϧ⧠āĻŽā§āϞ āĻāĻĒāĻĒāĻžāĻĻā§āϝ (Conjugate pairs theorem) : a+ib āĻā§āύ āĻŦāĻšā§āĻĒāĻĻā§ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻāĻāĻŋāϞ āĻŽā§āϞ āĻšāϞ⧠āĻāϰ āĻ āύā§āĻŦāύā§āϧ⧠a-ib āĻ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞ āĻšāĻŦā§ āĨ¤ āĻāĻŦāĻ a+âb āĻāĻāĻāĻŋ āĻŽā§āϞ āĻšāϞ⧠(āϝā§āĻāĻžāύ⧠âb āĻ āĻŽā§āϞāĻĻ), āĻāϰ āĻ āύā§āĻŦāύā§āϧ⧠a-âb āĻ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻāĻāĻāĻŋ āĻŽā§āϞ āĻšāĻŦā§ āĨ¤
¡ āĻŦāĻšā§āĻĒāĻĻā§āϰ āĻŽā§āϞ āϏāĻšāĻ āϏāĻŽā§āĻĒāϰā§āĻ : āϝāĻĻāĻŋ a,b,c,d, ...... k āĻā§āύ āĻŦāĻšā§āĻĒāĻĻā§ āϏāĻŽā§āĻāϰāĻŖ p0xn+p1xn-1+p2x n-2+ ...... +pn āĻāϰ āĻŽā§āϞ āĻšā§ āϤāĻŦā§,
 i. = a+b+c+ ...... + k = - p1/p0
 ii. = ab+bc+cd+ ...... = P2/P0
 iii. aÃbÃcÃdÃ......Ãk = (-1)n (pn/p0)
āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖ (Quadratic equation) : āĻŦāĻšā§āĻĒāĻĻā§ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻāĻžāϤ 2 āĻšāϞ⧠āϤāĻžāĻā§ āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖ āĻŦāϞ⧠āĨ¤ āĻāĻ āĻāϞāĻāĻŦāĻŋāĻļāĻŋāώā§āĻ āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻāĻĻāϰā§āĻļ āϰā§āĻĒ-
ax2+bx+c = 0; āϝā§āĻāĻžāύ⧠aâ 0; a,b,c āĻŽā§āϞāĻĻ āϏāĻāĻā§āϝāĻž
āĻāĻā§āϤ āϏāĻŽā§āĻāϰāĻŖ āϏāĻŽāĻžāϧāĻžāύ āĻāϰāϞ⧠x āĻāϰ āĻĻā§āĻāĻāĻŋ āĻŽāĻžāύ āĻĒāĻžāĻā§āĻž āϝāĻžāĻŦā§ āĻ āϰā§āĻĨāĻžā§ āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻĻā§āĻāĻāĻŋ āĻŽā§āϞ āĻšāĻŦā§-
$\frac{-\mathrm{b}+\sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$ āĻāĻŦāĻ $\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}$
¡ āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞ-āϏāĻšāĻ āϏāĻŽā§āĻĒāϰā§āĻ : ax2+bx+c = 0 āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞ āĻĻā§āĻāĻāĻŋ Îą āĻāĻŦāĻ Î˛ (Îą>β) āĻšāϞā§,
 i. $\sum \alpha=\alpha+\beta=-\mathrm{b} / \mathrm{a}$ = -Â
 ii. ιβ = c/a =Â
¡ āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞā§āϰ āĻĒā§āϰāĻā§āϤāĻŋ (Nature of the roots) : āĻāĻŽāϰāĻž āĻāĻžāύāĻŋ, ax 2+bx+c = 0 āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞ, $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ āĨ¤ āĻāĻāĻžāύā§, (b2 -4ac) āĻāϰ āĻŽāĻžāύ āĻĒāϰā§āϝāĻžāϞā§āĻāύāĻž āĻāϰāϞā§āĻ āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞāĻĻā§āĻŦā§ā§āϰ āĻĒā§āϰāĻā§āϤāĻŋ āĻāĻžāύāĻž āϝāĻžā§ āĨ¤ āĻāĻāύā§āϝ (b2-4ac) āĻā§ āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖā§āϰ āύāĻŋāĻļā§āĻāĻžā§āĻ āĻŦāĻž āύāĻŋāϰā§āĻĒāĻ (Discriminant) āĻŦāϞāĻž āĻšā§ āĨ¤
 i. āϝāĻĻāĻŋ b2-4ac=0 â b2=4ac āĻšā§ āϤāĻŦā§ āĻŽā§āϞ āĻĻā§āĻāĻāĻŋ āĻšāĻŦā§ âb/2a āĻāĻŦāĻ âb/2a āĨ¤ āĻ āϰā§āĻĨāĻžā§ āĻŽā§āϞ āĻĻā§āĻāĻāĻŋ āĻŦāĻžāϏā§āϤāĻŦ, āĻŽā§āϞāĻĻ āĻ āϏāĻŽāĻžāύ āĻšāĻŦā§ āĨ¤
 ii. b2-4ac>0 â b2>4ac āĻšāϞ⧠āĻŽā§āϞāĻĻā§āĻŦā§ āĻŦāĻžāϏā§āϤāĻŦ āĻ āĻ āϏāĻŽāĻžāύ āĻšāĻŦā§ āĨ¤
 iii. b2-4ac<0 â b2<4ac āĻšāϞ⧠āĻŽā§āϞāĻĻā§āĻŦā§ āĻ āύā§āĻŦāύā§āϧ⧠āĻāĻāĻŋāϞ āϏāĻāĻā§āϝāĻž āĻšāĻŦā§ āĨ¤
 iv. (b2-4ac) āĻĒā§āϰā§āĻŖāĻŦāϰā§āĻ āĻšāϞ⧠āĻŽā§āϞāĻĻā§āĻŦā§ āĻŦāĻžāϏā§āϤāĻŦ, āĻŽā§āϞāĻĻ āĻ āĻ āϏāĻŽāĻžāύ āĻšāĻŦā§ āĨ¤
 v. c = 0 āĻšāϞ⧠āĻāĻāĻāĻŋ āĻŽā§āϞ 0 āĻšāĻŦā§ āĨ¤
 vi. b = 0 āĻšāϞ⧠āĻŽā§āϞ āĻĻā§āĻāĻāĻŋ āĻšāĻŦā§ â(-c/a) āĻāĻŦāĻ -â(-c/a) āĻ āϰā§āĻĨāĻžā§ āĻŽā§āϞ āĻĻā§āĻāĻāĻŋāϰ āĻŽāĻžāύ āϏāĻŽāĻžāύ āĻāĻŋāύā§āϤ⧠āĻŦāĻŋāĻĒāϰā§āϤ āĻāĻŋāĻšā§āύāĻŦāĻŋāĻļāĻŋāώā§āĻ āĻšāĻŦā§ āĨ¤ āϞāĻā§āώāĻŖā§ā§, āĻāĻā§āώā§āϤā§āϰ⧠a āĻ c āĻāĻāĻ āĻāĻŋāĻšā§āύāϝā§āĻā§āϤ āĻšāϞ⧠āĻŽā§āϞāĻĻā§āĻŦā§ āĻāĻāĻŋāĻ˛Â Â āĻāĻŦāĻ āĻŦāĻŋāĻĒāϰā§āϤ āĻāĻŋāĻšā§āύāϝā§āĻā§āϤ āĻšāϞ⧠āĻŽā§āϞāĻĻā§āĻŦā§ āĻŦāĻžāϏā§āϤāĻŦ āĻšāĻŦā§ āĨ¤
¡ āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖā§āϰ āϏāĻžāϧāĻžāϰāĻŖ āĻŽā§āϞ āĻĨāĻžāĻāĻžāϰ āĻļāϰā§āϤ : a1x2+b1x+c1=0 āĻ a2x2+b2x+c 2=0 āϏāĻŽā§āĻāϰāĻŖāĻĻā§āĻŦā§ā§āϰ-
 i. āĻāĻāĻāĻŋ āĻŽā§āϞ āϏāĻžāϧāĻžāϰāĻŖ āĻšāĻŦā§ āϝāĻĻāĻŋ (a1b2-a2b1)(b1c2-b2c1) = (c 1a2-c2a1)2 āĻšā§ āĨ¤
 ii. āĻāĻā§ āĻŽā§āϞāĻ āϏāĻžāϧāĻžāϰāĻŖ āĻšāĻŦā§ āϝāĻĻāĻŋ a1/a2 = b1/b 2 = c1/c2 āĻšā§ āĨ¤
¡ āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖ āĻāĻ āύ : āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻĻā§āĻāĻāĻŋ āĻŽā§āϞ āĻĻā§ā§āĻž āĻĨāĻžāĻāϞ⧠āϤāĻž āĻĨā§āĻā§ āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖāĻāĻŋ āĻāĻ āύ āĻāϰāĻž āϝāĻžā§ āĨ¤ āϏāĻŽā§āĻāϰāĻŖāĻāĻŋ āĻšāĻŦā§-
 x2 - (āĻŽā§āϞāĻĻā§āĻŦā§ā§āϰ āϝā§āĻāĻĢāϞ)x + (āĻŽā§āϞāĻĻā§āĻŦā§ā§āϰ āĻā§āĻŖāĻĢāϞ) = 0Â
 āĻ āϰā§āĻĨāĻžā§ āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻĻā§āĻāĻāĻŋ āĻŽā§āϞ Îą āĻ Î˛ āĻšāϞ⧠āϏāĻŽā§āĻāϰāĻŖāĻāĻŋ āĻšāĻŦā§-
 x2 - (ι+β)x + ιβ = 0
¡ āϤā§āϰāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖ Cubic equation) : āĻŦāĻšā§āĻĒāĻĻā§ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻāĻžāϤ 3 āĻšāϞ⧠āϤāĻžāĻā§ āϤā§āϰāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖ āĻŦāϞ⧠āĨ¤ āĻāĻ āĻāϞāĻāĻŦāĻŋāĻļāĻŋāώā§āĻ āϤā§āϰāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻāĻĻāϰā§āĻļ āϰā§āĻĒ-
 ax3+bx2+cx+d = 0; āϝā§āĻāĻžāύ⧠aâ 0; a,b,c,d āĻŽā§āϞāĻĻ āϏāĻāĻā§āϝāĻž
¡ āϤā§āϰāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞ-āϏāĻšāĻ āϏāĻŽā§āĻĒāϰā§āĻ : ax3+bx2+cx+d = 0 āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞāϤā§āĻ°ā§ Îą,β,Îŗ āĻšāϞā§-
 i. = Îą+β+Îŗ = -b/a
 ii. = ιβ+Î˛Îŗ+ÎŗÎą = c/a
 iii. ÎąÎ˛Îŗ = -d/a
¡ Important formula :
i. (a+b)2 = a2+2ab+b2 = (a-b)2 +4ab
ii. (a-b)2= a2-2ab+b2 = (a+b)2 -4ab
iii. 4ab = (a+b)2-(a-b)2
iv. a2+b2 = (a+b)2-2ab = (a-b)2 +2ab
v. a3+b3 = (a+b)3-3ab(a+b) = (a+b)(a 2-ab+b2)
vi. a3-b3 = (a-b)3+3ab(a-b) = (a-b)(a 2+ab+b2)
vii. a4+b4 = [(a+b)2-2ab]2 -2(ab)2
viii. a2+b2+c2 = (a+b+c)2 -2(ab+bc+ca)
ix. (a+b)2+(b+c)2+(c+a)2 = 2(a2 +b2+c2+ab+bc+ca)
x. (a-b)2+(b-c)2+(c-a)2 = 2(a2 +b2+c2-ab-bc-ca)
xi. a3+b3+c3-3abc = (a+b+c)(a2 +b2+c2-ab-bc-ca)
= ÂŊ (a+b+c){(a-b)2+(b-c)2+(c-a)2}
= (a+b+c){(a+b+c)2-3(ab+bc+ca)}
āĻāĻžāĻŖāĻŋāϤāĻŋāĻ āϏāĻŽāϏā§āϝāĻž āĻ āϏāĻŽāĻžāϧāĻžāύ :
1. x3-px2+qx-r = 0 āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞāĻā§āĻ˛ā§ Îą,β,Îŗ āĻšāϞā§-
a. $\sum \alpha$
b. $\sum \alpha \beta$
c. $\sum \alpha^{2}$
d. $\sum \alpha^{3}$ āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰ āĨ¤
āϏāĻŽāĻžāϧāĻžāύ :
a. āĻāĻāĻžāύā§, $\sum \alpha=\alpha+\beta+\gamma=-(-\mathrm{p} / 1)=\mathrm{p}$ [See āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞ-āϏāĻšāĻ āϏāĻŽā§āĻĒāϰā§āĻ i]
b. $\sum \alpha \beta=\alpha \beta+\beta \gamma+\gamma \alpha=\mathrm{q} / 1=\mathrm{q}$ [See āϤā§āϰāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞ-āϏāĻšāĻ āϏāĻŽā§āĻĒāϰā§āĻ ii]
c. $\sum \alpha^{2}=\alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)-2(\alpha \beta+\beta y+\gamma \alpha)$Â [See Important formula viii]
= p2-2q
d. $\sum \alpha^{3}=\alpha^{3}+\beta^{3}+\gamma^{3}=(\alpha+\beta+\gamma)\left\{\alpha^{2}+\beta^{2}+\gamma^{2}-3(\alpha \beta+\beta \gamma+\gamma \alpha)\right\}+3 \alpha \beta \gamma$Â [See Important formulae xi]
= p(p2-2q-3q)+{-(-r/1)} [See āϤā§āϰāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞ āϏāĻšāĻ-āϏāĻŽā§āĻĒāϰā§āĻ]
= p3-5pq+3r
Â
2. x3+qx+r=0 āĻāϰ āĻŽā§āϞāĻā§āĻ˛ā§ Îą,β,Îŗ āĻšāϞā§Â $\frac{\gamma^{2}}{\alpha+\beta}+\frac{\alpha^{2}}{\beta+\gamma}+\frac{\beta^{2}}{\gamma+\alpha}$ āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰ āĨ¤
āϏāĻŽāĻžāϧāĻžāύ :
āĻāĻāĻžāύā§, x3+qx+r = 0 â x3+0.x2+qx+r = 0
â´ Îą+β+Îŗ = 0...(i) [See āϤā§āϰāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞ-āϏāĻšāĻ āϏāĻŽā§āĻĒāϰā§āĻ i]
(i) â Îą+β = -Îŗ; β+Îŗ = - Îą; Îą+Îŗ = -β
â´Â $\frac{\gamma^{2}}{\alpha+\beta}+\frac{\alpha^{2}}{\beta+\gamma}+\frac{\beta^{2}}{\gamma+\alpha}=\frac{\gamma^{2}}{-\gamma}+\frac{\alpha^{2}}{-\alpha}+\frac{\beta^{2}}{-\beta}=-\gamma-\alpha-\beta=-(\alpha+\beta+\gamma)=0$
Â
3. k āĻāϰ āĻŽāĻžāύ āĻāϤ āĻšāϞā§, (3k+1)x2+(11+k)x+9 = 0 āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞāĻā§āϞā§-
a. āϏāĻŽāĻžāύ
b. āĻŦāĻžāϏā§āϤāĻŦ āĻ āĻ āϏāĻŽāĻžāύ
c. āĻāĻāĻŋāϞ āĻšāĻŦā§?
āϏāĻŽāĻžāϧāĻžāύ :
āĻāĻāĻžāύā§, āύāĻŋāĻļā§āĻāĻžā§āĻ, D = (11+k)2-4(3k+1)9 [See āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞā§āϰ āĻĒā§āϰāĻā§āϤāĻŋ]
= k2+22k+121-108k-86
= k2-86k+85
= k2-k-85k+85
= (k-1)(k-85)
a. āĻŽā§āϞāĻā§āϞ⧠āϏāĻŽāĻžāύ āĻšāĻŦā§ āϝāĻĻāĻŋ D=0 āĻšā§ [See āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞā§āϰ āĻĒā§āϰāĻā§āϤāĻŋ i]
â (k-1)(k-85) = 0
â k=1 āĻ āĻĨāĻŦāĻž 85 āĻšā§
b. āĻŽā§āϞāĻā§āϞ⧠āĻŦāĻžāϏā§āϤāĻŦ āĻ āĻ āϏāĻŽāĻžāύ āĻšāĻŦā§ āϝāĻĻāĻŋ D>0 āĻšā§ [See āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞā§āϰ āĻĒā§āϰāĻā§āϤāĻŋ ii]
â (k-1)(k-85) > 0
â k<1 āĻ āĻĨāĻŦāĻž 85>0 āĻšā§ [See Algebra - chaper 2 - āĻŦāĻžāϏā§āϤāĻŦ āϏāĻāĻā§āϝāĻž]
c. āĻŽā§āϞāĻā§āϞ⧠āĻāĻāĻŋāϞ āĻšāĻŦā§ āϝāĻĻāĻŋ D<0 āĻšā§ [See āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞā§āϰ āĻĒā§āϰāĻā§āϤāĻŋ iii]
â (k-1)(k-85) < 0
â k<1<85 āĻšā§ [See Algebra - chaper 2 - āĻŦāĻžāϏā§āϤāĻŦ āϏāĻāĻā§āϝāĻž]
Â
4. x2-2x+3 = 0 āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞ āĻĻā§āĻāĻāĻŋ Îą āĻ Î˛ āĻšāϞ⧠āύāĻŋāĻā§āϰ āĻŽā§āϞāĻā§āϞ⧠āĻĻā§āĻŦāĻžāϰāĻž āĻāĻ āĻŋāϤ āϏāĻŽā§āĻāϰāĻŖāϏāĻŽā§āĻš āύāĻŋāϰā§āĻŖā§ āĻāϰ āĨ¤
i. -ι, -β
ii. 1/ι, 1/ β
iii. -1/ ι, -1/ β
iv. ι+β, ιβ
v. 4ι, 4β
vi. ι -1, β-1
vii. ι2, β2
viii. 1/ ι2, 1/β2
ix. ι+ ι-1, β+β-1
x. ι+β-1, β+ ι-1
xi. $\frac{1}{\alpha-1}, \frac{1}{\beta-1}$
xii. 1/ι3, 1/β3
āϏāĻŽāĻžāϧāĻžāύ :
āĻāĻāĻžāύā§, Îą+β = 2 [See āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞ-āϏāĻšāĻ āϏāĻŽā§āĻĒāϰā§āĻ i]
ιβ = 3 [See āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞ-āϏāĻšāĻ āϏāĻŽā§āĻĒāϰā§āĻ ii]
i. āύāĻŋāϰā§āĻŖā§ā§ āϏāĻŽā§āĻāϰāĻŖā§āϰ, āĻŽā§āϞāĻĻā§āĻŦā§ā§āϰ āϝā§āĻāĻĢāϞ = -Îą-β = -(Îą+β)
āĻŽā§āϞāĻĻā§āĻŦā§ā§āϰ āĻā§āĻŖāĻĢāϞ = (-Îą)(-β) = ιβ
â´ -Îą āĻ -β āĻŽā§āϞāĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāĻŽā§āĻāϰāĻŖ āĻšāĻŦā§,
x2-(-Îą-β)x+(-Îą)(-β) = 0 [See āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖ āĻāĻ āύ]
â x2+(Îą+β)x+ιβ = 0
â x2+2x+3 = 0
Short-cut : ax2+bx+c=0 āϏāĻŽā§āĻāϰāĻŖā§ āĻŽā§āϞāĻĻā§āĻŦā§ Îą āĻ Î˛ āĻšāϞ⧠-Îą āĻ -β āĻŽā§āϞāĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāĻŽā§āĻāϰāĻŖ āĻšāĻŦā§, ax2-bx+c=0
ii. āύāĻŋāϰā§āĻŖā§ā§ āϏāĻŽā§āĻāϰāĻŖā§āϰ, āĻŽā§āϞāĻĻā§āĻŦā§ā§āϰ āϝā§āĻāĻĢāϞ = $-1 / \alpha-1 / \beta=-\frac{\alpha+\beta}{\alpha \beta}=-2 / 3$
āĻŽā§āϞāĻĻā§āĻŦā§ā§āϰ āĻā§āĻŖāĻĢāϞ = 1/Îą à 1/β = 1/(ιβ) = 1/3
â´ 1/Îą āĻ 1/β āĻŽā§āϞāĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāĻŽā§āĻāϰāĻŖ āĻšāĻŦā§,
x2-(1/Îą+1/β)x+(1/Îą)(1/β) = 0 [see āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖ āĻāĻ āύ]
â x2-2/3x+1/3 = 0
â 3x2-2x+1 = 0
Short-cut : ax2+bx+c = 0 āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞāĻĻā§āĻŦā§ Îą āĻ Î˛ āĻšāϞ⧠1/Îą āĻ 1/β āĻŽā§āϞāĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāĻŽā§āĻāϰāĻŖ āĻšāĻŦā§, cx2+bx+a = 0
iii. āύāĻŋāϰā§āĻŖā§ā§ āϏāĻŽā§āĻāϰāĻŖā§āϰ, āĻŽā§āϞāĻĻā§āĻŦā§ā§āϰ āϝā§āĻāĻĢāϞ = -1/Îą-1/β = - = -2/3
āĻŽā§āϞāĻĻā§āĻŦā§ā§āϰ āĻā§āĻŖāĻĢāϞ = (-1/Îą)Ã(-1/β) = 1/(ιβ) = 1/3
â´ -1/Îą āĻ -1/β āĻŽā§āϞāĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāĻŽā§āĻāϰāĻŖ āĻšāĻŦā§,
x2-(-1/Îą-1/β)x+(-1/Îą)(-1/β) = 0 [See āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖ āĻāĻ āύ]
â x2+(2/3)x+(1/3) = 0
â 3x2+2x+1 = 0
Short-cut : ax2+bx+c = 0 āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞāĻĻā§āĻŦā§ Îą āĻ Î˛ āĻšāϞ⧠-1/Îą āĻ -1/β āĻŽā§āϞāĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāĻŽā§āĻāϰāĻŖ āĻšāĻŦā§, cx2-bx+a = 0
iv. āύāĻŋāϰā§āĻŖā§ā§ āϏāĻŽā§āĻāϰāĻŖā§āϰ, āĻŽā§āϞāĻĻā§āĻŦā§ā§āϰ āϝā§āĻāĻĢāϞ = Îą+β+ιβ = 5
āĻŽā§āϞāĻĻā§āĻŦā§ā§āϰ āĻā§āĻŖāĻĢāϞ = (Îą+β)(ιβ) = 6
â´ Îą+β āĻ ÎąÎ˛ āĻŽā§āϞāĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāĻŽā§āĻāϰāĻŖ āĻšāĻŦā§,
x2-(Îą+β+ιβ)x+(Îą+β)(ιβ) = 0 [see āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖ āĻāĻ āύ]
â x2-5x+6 = 0
Short-cut : ax2+bx+c = 0 āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞāĻĻā§āĻŦā§ Îą āĻ Î˛ āĻšāĻ˛ā§ Îą+β āĻ ÎąÎ˛ āĻŽā§āϞāĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāĻŽā§āĻāϰāĻŖ āĻšāĻŦā§, ax2+a(b-c)x-bc = 0
v. āύāĻŋāϰā§āĻŖā§ā§ āϏāĻŽā§āĻāϰāĻŖā§āϰ, āĻŽā§āϞāĻĻā§āĻŦā§ā§āϰ āϝā§āĻāĻĢāϞ = 4Îą+4β = 4(Îą+β) = 8
āĻŽā§āϞāĻĻā§āĻŦā§ā§āϰ āĻā§āĻŖāĻĢāϞ = (4Îą)(4β) = 16ιβ = 48
â´ 4Îą āĻ 4β āĻŽā§āϞāĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāĻŽā§āĻāϰāĻŖ āĻšāĻŦā§,
x2-(4Îą+4β)x+(4Îą)(4β) = 0 [see āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖ āĻāĻ āύ]
â x2-8x+48 = 0
Short-cut : ax2+bx+c = 0 āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞāĻĻā§āĻŦā§ Îą āĻ Î˛ āĻšāϞ⧠nÎą āĻ nβ āĻŽā§āϞāĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāĻŽā§āĻāϰāĻŖ āĻšāĻŦā§, ax2+nbx+n2c = 0
vi. āύāĻŋāϰā§āĻŖā§ā§ āϏāĻŽā§āĻāϰāĻŖā§āϰ, āĻŽā§āϞāĻĻā§āĻŦā§ā§āϰ āϝā§āĻāĻĢāϞ = Îą-1+β-1 = Îą+β-2 = 0
āĻŽā§āϞāĻĻā§āĻŦā§ā§āϰ āĻā§āĻŖāĻĢāϞ = (Îą-1)(β-1) = ιβ-Îą-β+1
= ιβ-(ι+β)+1
= 2
â´ (Îą-1) āĻ (β-1) āĻŽā§āϞāĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāĻŽā§āĻāϰāĻŖ āĻšāĻŦā§,
x2-(Îą-1+β-1)x+(Îą-1)(β-1) = 0 [see āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖ āĻāĻ āύ]
â x2+2 = 0
Short-cut : ax2+bx+c = 0 āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞāĻĻā§āĻŦā§ Îą āĻ Î˛ āĻšāϞ⧠(Îą-n) āĻ (β-n) āĻŽā§āϞāĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāĻŽā§āĻāϰāĻŖ āĻšāĻŦā§, ax2-(b-2an)x+c+bn+n2 = 0
vii. āύāĻŋāϰā§āĻŖā§ā§ āϏāĻŽā§āĻāϰāĻŖā§āϰ, āĻŽā§āϞāĻĻā§āĻŦā§ā§āϰ āϝā§āĻāĻĢāϞ = Îą2+β2 = (Îą+β)2-2ιβ = 4-6 = -2
āĻŽā§āϞāĻĻā§āĻŦā§ā§āϰ āĻā§āĻŖāĻĢāϞ = Îą2β2 = (ιβ)2 = 9
â´ Îą2 āĻ Î˛2 āĻŽā§āϞāĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāĻŽā§āĻāϰāĻŖ āĻšāĻŦā§,
x2-(Îą2+β2)x+(Îą2)(β2) = 0 [see āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖ āĻāĻ āύ]
â x2+2x+9 = 0
Short-cut : ax2+bx+c = 0 āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞāĻĻā§āĻŦā§ Îą āĻ Î˛ āĻšāĻ˛ā§ Îą2 āĻ Î˛2 āĻŽā§āϞāĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāĻŽā§āĻāϰāĻŖ āĻšāĻŦā§, a2x 2+(b2-2ca)x+c2 = 0
viii. āύāĻŋāϰā§āĻŖā§ā§ āϏāĻŽā§āĻāϰāĻŖā§āϰ, āĻŽā§āϞāĻĻā§āĻŦā§ā§āϰ āϝā§āĻāĻĢāϞ = 1/Îą2 + 1/β2
=Â $\frac{\alpha^{2}+\beta^{2}}{\alpha^{2} \beta^{2}}$
=Â $\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{(\alpha \beta)^{2}}$ [See Important formulae iv]
= (4-6)/9
= -2/9
āĻŽā§āϞāĻĻā§āĻŦā§ā§āϰ āĻā§āĻŖāĻĢāϞ = 1/Îą2 . 1/β2 = 1/(ιβ)2 = 1/9
â´ 1/Îą2 āĻ 1/β2 āĻŽā§āϞāĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāĻŽā§āĻāϰāĻŖ āĻšāĻŦā§,
x2-(1/Îą2+1/β2)x+(1/Îą2)(1/β 2)=0 [see āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖ āĻāĻ āύ]
â x2+(2/9)x+1/9 = 0
â 9x2+2x+1 = 0
Short-cut : ax2+bx+c = 0 āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞāĻĻā§āĻŦā§ Îą āĻ Î˛ āĻšāϞ⧠1/Îą2 āĻ 1/β2 āĻŽā§āϞāĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāĻŽā§āĻāϰāĻŖ āĻšāĻŦā§, c2x 2-(b2-2ac)x+a2 = 0
ix. āύāĻŋāϰā§āĻŖā§ā§ āϏāĻŽā§āĻāϰāĻŖā§āϰ, āĻŽā§āϞāĻĻā§āĻŦā§ā§āϰ āϝā§āĻāĻĢāϞ = Îą+Îą-1+β+β-1
= ι+β+1/ι+1/β
= (ι+β)+
= 2+2/3
= 8/3
āĻŽā§āϞāĻĻā§āĻŦā§ā§āϰ āĻā§āĻŖāĻĢāϞ = (Îą+Îą-1)(β+β-1)
= ιβ+ι-1β+β-1ι+ι-1β-1
= ιβ+β/ι+ι/β+(1/ι)(1/β)
=Â $\alpha \beta+\frac{1}{\alpha \beta}+\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}$
=Â $\alpha \beta+\frac{1}{\alpha \beta}+\frac{(\alpha+\beta) 2-2 \alpha \beta}{\alpha \beta}$
= 3+1/3+(4-6)/3
= 8/3
â´ (Îą+Îą-1) āĻ (β+β-1) āĻŽā§āϞāĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāĻŽā§āĻāϰāĻŖ āĻšāĻŦā§,
x2-(Îą+Îą-1+β+β-1)x+(Îą+Îą-1)(β+β -1) = 0 [see āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖ āĻāĻ āύ]
â x2-8/3x+8/3 = 0
â 3x2-8x+8 = 0
Short-cut : ax2+bx+c = 0 āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞāĻĻā§āĻŦā§ Îą āĻ Î˛ āĻšāĻ˛ā§ Îą+Îą -1 āĻ Î˛+β-1 āĻŽā§āϞāĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāĻŽā§āĻāϰāĻŖ āĻšāĻŦā§, acx2 +b(a+c)x+a2+b2+c2-2ac = 0
x. āύāĻŋāϰā§āĻŖā§ā§ āϏāĻŽā§āĻāϰāĻŖā§āϰ, āĻŽā§āϞāĻĻā§āĻŦā§ā§āϰ āϝā§āĻāĻĢāϞ = Îą+β-1+1/Îą+1/β
=Â $(\alpha+\beta)+\frac{\alpha+\beta}{\alpha \beta}$
= 2+2/3
= 8/3
āĻŽā§āϞāĻĻā§āĻŦā§ā§āϰ āĻā§āĻŖāĻĢāϞ = (Îą+β-1)(β+Îą-1)
= ιβ+1+1+ι-1β-1
= ιβ+2+ 1/(ιβ)
= 3+2+1/3
= 16/3
â´ (Îą+β-1) āĻ (β+Îą-1) āĻŽā§āϞāĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāĻŽā§āĻāϰāĻŖ āĻšāĻŦā§,
x2-(Îą+β-1+β+Îą-1)x+(Îą+β-1)(β+Îą -1) = 0 [see āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖ āĻāĻ āύ]
â x2-(8/3)x+16/3 = 0
â 3x2-8x+16 = 0
Short-cut : ax2+bx+c = 0 āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞāĻĻā§āĻŦā§ Îą āĻ Î˛ āĻšāϞ⧠(Îą+β -1) āĻ (β+Îą-1) āĻŽā§āϞāĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāĻŽā§āĻāϰāĻŖ āĻšāĻŦā§, acx2 +b(a+c)x+(a+c)2 = 0
xi. āύāĻŋāϰā§āĻŖā§ā§ āϏāĻŽā§āĻāϰāĻŖā§āϰ, āĻŽā§āϞāĻĻā§āĻŦā§ā§āϰ āϝā§āĻāĻĢāϞÂ
$=\frac{1}{\alpha-1}+\frac{1}{\beta-1}$
$=\frac{\alpha-1+\beta-1}{(\alpha-1)(\beta-1)}$
$=\frac{\alpha+\beta-2}{\alpha \beta-\alpha-\beta+1}$
$=\frac{(\alpha+\beta)-2}{\alpha \beta-(\alpha+\beta)+1}$
= 0
āĻŽā§āϞāĻĻā§āĻŦā§ā§āϰ āĻā§āĻŖāĻĢāϞÂ
$=\frac{1}{\alpha-1} \times \frac{1}{\beta-1}$
$=\frac{1}{\alpha \beta-(\alpha+\beta)+1}$
= 1/(3-2+1)
= 1/2
â´ 1/(Îą-1) āĻ 1/(β-1) āĻŽā§āϞāĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāĻŽā§āĻāϰāĻŖ āĻšāĻŦā§,
$\mathrm{x}^{2}-\left(\frac{1}{\alpha-1}+\frac{1}{\beta-1}\right) \mathrm{x}+\left(\frac{1}{\alpha-1}\right)\left(\frac{1}{\beta-1}\right)=0$ [see āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖ āĻāĻ āύ]
â x2+1/2 = 0
â 2x2+1= 0
Short-cut : ax2+bx+c = 0 āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞāĻĻā§āĻŦā§ Îą āĻ Î˛ āĻšāϞā§Â $\frac{1}{\alpha-1}$ āĻ $\frac{1}{\beta-1}$ āĻŽā§āϞāĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāĻŽā§āĻāϰāĻŖ āĻšāĻŦā§, (a+b+c)x2+(b+2a)x+a = 0
xii. āύāĻŋāϰā§āĻŖā§ā§ āϏāĻŽā§āĻāϰāĻŖā§āϰ, āĻŽā§āϞāĻĻā§āĻŦā§ā§āϰ āϝā§āĻāĻĢāϞ = 1/Îą3 + 1/β3
$=\frac{\alpha^{3}+\beta^{3}}{\alpha^{3} \beta^{3}}$
$=\frac{(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)}{(\alpha \beta)^{3}}$ [See important formula v]
= (23-3.3.2)/33
= 10/27
āĻŽā§āϞāĻĻā§āĻŦā§ā§āϰ āĻā§āĻŖāĻĢāϞ = 1/Îą3 . 1/β3
= 1/(ιβ)3
= 1/27
â´ 1/Îą3 āĻ 1/β3 āĻŽā§āϞāĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāĻŽā§āĻāϰāĻŖ āĻšāĻŦā§,
x2-(1/Îą3 + 1/β3 )x+(1/Îą3)(1/β 3) = 0 [see āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖ āĻāĻ āύ]
â x2-(10/27)x+1/27 = 0
â 27x2-10x+1 = 0
Short-cut : ax2+bx+c = 0 āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞāĻĻā§āĻŦā§ Îą āĻ Î˛ āĻšāϞ⧠1/Îą3 āĻ 1/β3 āĻŽā§āϞāĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāĻŽā§āĻāϰāĻŖ āĻšāĻŦā§, c3x+b(b 2-3ac)x+a3 = 0
5. $\sqrt{-5}-1$ āĻā§āύ āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻāĻāĻāĻŋ āĻŽā§āϞ āĻšāϞ⧠āĻ āĻĒāϰ āĻŽā§āϞāĻāĻŋ āĻāϤ? āϏāĻŽā§āĻāϰāĻŖāĻāĻŋ āύāĻŋāϰā§āĻŖā§ āĻāϰ āĨ¤
āϏāĻŽāĻžāϧāĻžāύ :
āĻāĻāĻžāύā§, āĻāĻāĻāĻŋ āĻŽā§āĻ˛Â $\sqrt{-5}-1=-1+i \sqrt{5} \quad[i=\sqrt{-1}]$
â´ āĻ āĻĒāϰ āĻŽā§āϞ = $-1-i \sqrt{5}$ [See āĻ āύā§āĻŦāύā§āϧ⧠āĻŽā§āϞ āĻāĻĒāĻĒāĻžāĻĻā§āϝ]
â´ āύāĻŋāϰā§āĻŖā§ā§ āϏāĻŽā§āĻāϰāĻŖā§āϰ, āĻŽā§āϞāĻĻā§āĻŦā§ā§āϰ āϝā§āĻāĻĢāϞ = $-1+\mathrm{i} \sqrt{5}-1-\mathrm{i} \sqrt{5}=-2$
āĻŽā§āϞāĻĻā§āĻŦā§ā§āϰ āĻā§āĻŖāĻĢāϞ = $(-1+i \sqrt{5})(-1-i \sqrt{5})$
=Â $(-1)^{2}-(\mathrm{i} \sqrt{5})^{2}$Â [(a+b)(a-b) = a2-b 2]
= 1-i25
= 1-i2.5
= 1+5 [i2 = -1]
= 6
â´ āύāĻŋāϰā§āĻŖā§ā§ āϏāĻŽā§āĻāϰāĻŖ, $x^{2}-(-1+i \sqrt{5})(-1-i \sqrt{5}) x+(-1+i \sqrt{5})(-1-i \sqrt{5})=0$ [see āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖ āĻāĻ āύ]
â x2+2x+6 = 0
Short-cut : āĻā§āύ āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻāĻāĻāĻŋ āĻŽā§āϞ a+ib āĻšāϞ⧠āϏāĻŽā§āĻāϰāĻŖāĻāĻŋ āĻšāĻŦā§, x 2-2ax+(a2+b2)=0
6. 3x2-2x+k=0 āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞāĻĻā§āĻŦā§ā§āϰ āĻ āύā§āϤāϰ 1 āĻāĻāĻ āĻšāϞ⧠k āĻāϰ āĻŽāĻžāύ āĻāϤ?
āϏāĻŽāĻžāϧāĻžāύ :
āϧāϰāĻŋ, āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞāĻĻā§āĻŦā§ Îą āĻ Î˛ (āϝā§āĻāĻžāĻ¨ā§ Îą>β)
āĻĻā§āĻā§āĻž āĻāĻā§, Îą-β=1 āĻāĻāĻžāύā§, Îą+β = -(-2/3) = 2/3 [See āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞ-āϏāĻšāĻ āϏāĻŽā§āĻĒāϰā§āĻ i]
āĻāĻŦāĻ ÎąÎ˛ = k/3 [See āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞ-āϏāĻšāĻ āϏāĻŽā§āĻĒāϰā§āĻ ii]
āĻāĻāύ, 4ιβ = (Îą+β)2-(Îą-β)2 [See Important formulae iii]
â 4ιβ = (2/3)2-(1)2
â 4.(k/3) = 4/9-1
â (4/3)k = -5/9
â´ k = -5/9 Ã 3/4 = -5/12
Short-cut : ax2+bx+c=0 āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞāĻĻā§āĻŦā§ā§āϰ āĻ āύā§āϤāϰ 1 āĻāĻāĻ āĻšāϞā§, b 2-a2 = 4ca
āĻāĻā§āώā§āϤā§āϰā§, (-2)2-32 = 4.k.3
â 12k = -5
â k = -5/12
7. px2+qx+q=0 āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞāĻĻā§āĻŦā§ā§āϰ āĻ āύā§āĻĒāĻžāϤ mâļn āĻšāϞā§, $\sqrt{\frac{\mathrm{m}}{\mathrm{n}}}+\sqrt{\frac{\mathrm{n}}{\mathrm{m}}}+\sqrt{\frac{\mathrm{q}}{\mathrm{p}}}$ āĻāϰ āĻŽāĻžāύ āĻāϤ?
āϏāĻŽāĻžāϧāĻžāύ :
āϧāϰāĻŋ, āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞāĻĻā§āĻŦā§ Îą āĻ Î˛ āĨ¤
â´ Îą+β = -q/p [see āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞ-āϏāĻšāĻ āϏāĻŽā§āĻĒāϰā§āĻ i]
ⴠιβ = q/p [see āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞ-āϏāĻšāĻ āϏāĻŽā§āĻĒāϰā§āĻ ii]
āĻĻā§āĻā§āĻž āĻāĻā§, Îą/β = m/n
āϤāĻžāĻšāϞā§, $\sqrt{\frac{\mathrm{m}}{\mathrm{n}}}+\sqrt{\frac{\mathrm{n}}{\mathrm{m}}}+\sqrt{\frac{\mathrm{q}}{\mathrm{p}}}$
â $\sqrt{\frac{\alpha}{\beta}}+\sqrt{\frac{\beta}{\alpha}}+\sqrt{\frac{\mathrm{q}}{\mathrm{p}}}$
â $\frac{\sqrt{\alpha}}{\sqrt{\beta}}+\frac{\sqrt{\beta}}{\sqrt{\alpha}}+\sqrt{\frac{q}{p}} \quad\left[\because \sqrt{\frac{x}{y}}=\frac{\sqrt{x}}{\sqrt{y}}\right]$
$\Rightarrow \frac{(\sqrt{\alpha})^{2}+(\sqrt{\beta})^{2}}{\sqrt{\alpha} \sqrt{\beta}}+\sqrt{\frac{q}{p}}$
$\Rightarrow \frac{\alpha+\beta}{\sqrt{\alpha \beta}}+\sqrt{\frac{q}{p}} \quad\left[\because \sqrt{x} \cdot \sqrt{y}=\sqrt{x y} \&(\sqrt{x})^{2}=x\right]$
$\Rightarrow \frac{-q / p}{\sqrt{q} / p}+\sqrt{\frac{q}{p}}$
$\Rightarrow \frac{-\sqrt{q / p} \times \sqrt{q / p}}{\sqrt{q / p}}+\sqrt{q / p} \quad[\because x=\sqrt{x} \times \sqrt{x}]$
$\Rightarrow-\sqrt{q / p}+\sqrt{q / p}=0$
8. ax2+2x+1 = 0 āĻāĻŦāĻ x2+2x+a = 0 āϏāĻŽā§āĻāϰāĻŖāĻĻā§āĻŦā§ā§āϰ āĻāĻāĻāĻŋ āϏāĻžāϧāĻžāϰāĻŖ āĻŽā§āϞ āĻĨāĻžāĻāϞ⧠a āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰ āĨ¤ (aâ 1)
āϏāĻŽāĻžāϧāĻžāύ :
āϧāϰāĻŋ, āϏāĻžāϧāĻžāϰāĻŖ āĻŽā§āϞ p āĨ¤
âĩ p āĻāĻā§ āϏāĻŽā§āĻāϰāĻŖā§āϰ āϏāĻžāϧāĻžāϰāĻŖ āĻŽā§āϞ â´ p āĻĻā§āĻŦāĻžāϰāĻž āϏāĻŽā§āĻāϰāĻŖāĻĻā§āĻŦā§ āϏāĻŋāĻĻā§āϧ āĻšāĻŦā§ āĨ¤
āĻ āϰā§āĻĨāĻžā§, ap2+2p+1=0 âĻ(i)
āĻāĻŦāĻ, p2+2p+a=0 âĻ(ii)
(i) āĻ (ii) āĻĨā§āĻā§ āĻŦāĻā§āϰāĻā§āĻŖāύ āĻĒāĻĻā§āϧāϤāĻŋāϰ āϏāĻžāĻšāĻžāϝā§āϝ⧠āĻĒāĻžāĻ,
$\frac{p^{2}}{2 a-2}=\frac{p}{1-a^{2}}=\frac{1}{2 a-2}$ âĻ(iii) [a1x2+b1x+c1 = 0 āĻ a 2x2+b2x+c2=0 āĻšāϞ⧠āĻŦāĻā§āϰāĻā§āĻŖāύ āĻĒāĻĻā§āϧāϤāĻŋ āĻ āύā§āϏāĻžāϰā§, $\frac{x^{2}}{b_{1} c_{2}-b_{2} c_{1}}=\frac{x}{c_{1} a_{2}-c_{2} a_{1}}=\frac{1}{a_{1} b_{2}-b_{2} a_{1}}$ ]
(iii) â =Â $\frac{\mathrm{p}^{2}}{2 \mathrm{a}-2}=\frac{\mathrm{p}}{1-\mathrm{a}^{2}}$
â p2 = 1
â p = Âą1
āĻāĻŦāĻžāϰ, (iii)Â
$\Rightarrow \frac{1}{1-a^{2}}=\frac{1}{2 a-2}$
$\Rightarrow p=\frac{-\left(a^{2}-1\right)}{2 a-2}$
$\Rightarrow p=\frac{-(a+1)(a-1)}{2(a-1)}$
$\Rightarrow p=\frac{(a+1)}{2} \ldots(i v)$
P=1 āĻšāϞ⧠(iv) â $-\frac{(a+1)}{2}=1$
â -a-1 = 2
â a=1
P = -1 āĻšāϞ⧠(iv) â $-\frac{(a+1)}{2}=-1$
â -a-1 = -2
â a = 1
āĻŦāĻŋāĻāϞā§āĻĒ āĻĒāĻĻā§āϧāϤāĻŋ :
āϧāϰāĻŋ, āϏāĻžāϧāĻžāϰāĻŖ āĻŽā§āϞ p āĨ¤
â´ ap2+2p+1 = 0 âĻ(i) āĻāĻŦāĻ, p2+2p+a = 0 âĻ(ii)
(i) â (ii) â ap2-p2+1-a = 0
â p2(a-1)-(a-1) = 0
â (p2-1)(a-1) = 0
āĻāĻŋāύā§āϤ⧠aâ 1â a-1 â 0
â´ p2-1=0 â p = Âą1
p=1 āĻšāϞ⧠(i) â a(1)2+2(1)+1=0 â a = -3
p=-1 āĻšāϞ⧠(i) â a(-1)2+2(-1)+1=0 â a = 1
Â
9. x āĻāϰ āĻā§āύ āĻŦāĻžāϏā§āϤāĻŦ āĻŽāĻžāύā§āϰ āĻāύā§āϝ-
a. x2-6x+45 āĻāϰ āĻŽāĻžāύ āύā§āϝā§āύāϤāĻŽ āĻšāĻŦā§? āύā§āϝā§āύāϤāĻŽ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰ āĨ¤
b. 19-x2+6x āĻāϰ āĻŽāĻžāύ āĻŦā§āĻšāϤā§āϤāĻŽ āĻšāĻŦā§? āĻŦā§āĻšāϤā§āϤāĻŽ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰ āĨ¤
āϏāĻŽāĻžāϧāĻžāύ :
a. f(x) = x2-6x+45 āĻāϰ āύā§āϝā§āύāϤāĻŽ āĻŽāĻžāύ āĻĒāĻžāĻā§āĻž āϝāĻžāĻŦā§ āϝāĻĻāĻŋ a>0 āĻšā§ āĨ¤
x = -b/2a āĻāϰ āĻāύā§āϝ f(x) āĻāϰ āύā§āϝā§āύāϤāĻŽ āĻŽāĻžāύ āĻĒāĻžāĻā§āĻž āϝāĻžāĻŦā§ āϝā§āĻāĻžāύā§, āύā§āϝā§āύāϤāĻŽ āĻŽāĻžāύ = f(-b/2a)
āĻāĻā§āώā§āϤā§āϰā§, x=-(-b/2a)=3 āĻāϰ āĻāύā§āϝ āύā§āϝā§āύāϤāĻŽ āĻŽāĻžāύ āĻĒāĻžāĻā§āĻž āϝāĻžāĻŦā§ āĨ¤
â´ āύā§āϝā§āύāϤāĻŽ āĻŽāĻžāύ = f(-b/2a) = f(3) = (3)2-6(3)+45 = 36
b. f(x) = 19-x2+6x āĻāϰ āĻŦā§āĻšāϤā§āϤāĻŽ āĻŽāĻžāύ āĻĒāĻžāĻā§āĻž āϝāĻžāĻŦā§ āϝāĻĻāĻŋ a<0 āĻšā§ āĨ¤
x = -b/2a āĻāϰ āĻāύā§āϝ f(x) āĻāϰ āĻŦā§āĻšāϤā§āϤāĻŽ āĻŽāĻžāύ āĻĒāĻžāĻā§āĻž āϝāĻžāĻŦā§ āϝā§āĻāĻžāύ⧠āĻŦā§āĻšāϤā§āϤāĻŽ āĻŽāĻžāύ = f(-b/2a)
āĻāĻā§āώā§āϤā§āϰā§, x=-(b/-2a)=3 āĻāϰ āĻāύā§āϝ āĻŦā§āĻšāϤā§āϤāĻŽ āĻŽāĻžāύ āĻĒāĻžāĻā§āĻž āϝāĻžāĻŦā§ āĨ¤
â´ āĻŦā§āĻšāϤā§āϤāĻŽ āĻŽāĻžāύ = f(-b/2a) = f(3) = 19-(3)2+6(3) = 28 â
Calculator techniques : Calculator-āĻāϰ āϏāĻžāĻšāĻžāϝā§āϝ⧠āĻĻā§āĻŦāĻŋāĻāĻžāϤ āĻ āϤā§āϰāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞāĻā§āϞā§āϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻž āϝāĻžā§ āĨ¤ āĻĒā§āϰāĻžāĻĒā§āϤ āĻŽāĻžāύ āĻĒā§āϰāĻļā§āύā§āϰ āĻļāϰā§āϤāĻžāύā§āϏāĻžāϰ⧠āĻĒāϰāĻŋāĻŦāϰā§āϤāĻŋāϤ āĻāϰ⧠āϏāĻšāĻā§āĻ āύāϤā§āύ āĻĻā§āĻŦāĻŋāĻāĻžāϤ/ āϤā§āϰāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖ āĻāĻ āύ āĻāϰāĻž āϝāĻžā§ āĨ¤
ax2+bx+c=0 āĻāĻā§āϤāĻŋāϰ āϏāĻŽā§āĻāϰāĻŖ āϏāĻŽāĻžāϧāĻžāύā§āϰ āĻāύā§āϝ āĻāĻžāĻĒā§āύ-
āĻāϰāĻĒāϰ a,b,c āĻāϰ āĻŽāĻžāύ input āĻāϰāϞā§āĻ āϏāĻŽāĻžāϧāĻžāύ āĻĒā§ā§ā§ āϝāĻžāĻŦā§āύ āĨ¤
ax3+bx2+cx+d āĻāĻā§āϤāĻŋāϰ āϏāĻŽā§āĻāϰāĻŖ āϏāĻŽāĻžāϧāĻžāύā§āϰ āĻāύā§āϝ āĻāĻžāĻĒā§āύ-
Example 4 āĻāϰ āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖ āϏāĻŽāĻžāϧāĻžāύā§āϰ āĻāύā§āϝ āĻĒā§āϰā§āĻŦā§āĻā§āϤ āĻĒā§āϰāĻā§āϰāĻŋā§āĻžā§ 2 degree equation mode āĻ āĻĒā§āϰāĻŦā§āĻļ āĻāϰ⧠āĻāĻžāĻĒāϤ⧠āĻšāĻŦā§-
āĻ
āϰā§āĻĨāĻžā§, āĻāĻā§āϤ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞāĻĻā§āĻŦā§ āĻ
āĻŦāĻžāϏā§āϤāĻŦ āĨ¤ āĻŽāĻžāĻ¨Â $1+\sqrt{2} \mathrm{i}$ āĻ $1-\sqrt{2} \mathrm{i}$ āĨ¤Â āĻā§āĻĒā§ āĻŦāĻžāϏā§āϤāĻŦ āĻ āĻāĻžāϞā§āĻĒāύāĻŋāĻ āĻ
āĻāĻļ āĻĻā§āĻāĻž āϝāĻžā§ āĨ¤
āĻĸāĻžāĻŦāĻŋāϰ āĻŦāĻŋāĻāϤ āĻŦāĻāϰā§āϰ āĻĒā§āϰāĻļā§āύ āĻ āϏāĻŽāĻžāϧāĻžāύ :
1. x2-5x-3=0 āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞāĻĻā§āĻŦā§ Îą, β āĻšāϞ⧠1/Îą, 1/β āĻŽā§āϞāĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāĻŽā§āĻāϰāĻŖ āĻā§āύāĻāĻŋ? [DU : 1999-2000]
a. 3x2+5x-1=0
b. 3x2-5x+1=0
c. 5x2+x-3=0
d. 5x2-x-3=0
2. x2-4x+4=0 āĻāϰ āĻŦā§āĻāĻĻā§āĻŦā§ Îą āĻāĻŦāĻ Î˛ āĻšāĻ˛ā§ Îą3+β3 āĻāϰ āĻŽāĻžāύ āĻāϤ? [DU : 2000-01]
a. 24
b. 32
c. 16
d. 8
3. x2-5x-3=0 āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞāĻĻā§āĻŦā§ x1, x 2 āĻšāϞ⧠1/x1, 1/x2 āĻŽā§āϞāĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāĻŽā§āĻāϰāĻŖ āĻāĻŋ? [DU : 2001-02]
a. 3x2-5x+1=0
b. 5x2+x-3=0
c. 3x2+5x-1=0
d. 5x2-x-3=0
4. p āĻāϰ āĻāĻŋāϰā§āĻĒ āĻŽāĻžāύā§āϰ āĻāύā§āϝ x2+px+1 = 0 āϏāĻŽā§āĻāϰāĻŖāĻāĻŋāϰ āĻŽā§āϞāĻĻā§āĻŦā§ āĻāĻāĻŋāϞ āĻšāĻŦā§? [DU : 2002-03]
a. -2â¤pâ¤2
b. -4<pâ¤4
c. -2<p<2
d. -4â¤p<4
5. 6x2-5x+1=0 āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞāĻĻā§āĻŦā§ Îą, β āĻšāϞ⧠1/Îą, 1/β āĻŽā§āϞ āĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāĻŽā§āĻāϰāĻŖāĻāĻŋ āĻšāĻŦā§- [DU : 2004-05]
a. x2-5x+6=0
b. 3x2-2x+5=0
c. x2-6x+5=0
d. 5x2+2x-6=0
6. k āĻāϰ āϝ⧠āĻŽāĻžāύā§āϰ āĻāύā§āϝ āϏāĻŽā§āĻāϰāĻŖ (k+1)x2+4(k-2)x+2k = 0 āĻāϰ āĻŽā§āϞāĻĻā§āĻŦā§ā§āϰ āĻŽāĻžāύ āϏāĻŽāĻžāύ āĻšāĻŦā§ āϤāĻž- [DU : 2004-05]
a. 4
b. 8
c. 2
d. 3
7. x2-2x+3=0 āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞāĻĻā§āĻŦā§ Îą, β āĻšāĻ˛ā§ Îą+β, ιβ āĻŽā§āϞāĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāĻŽā§āĻāϰāĻŖāĻāĻŋ āĻšāĻŦā§- [DU : 2005-06]
a. x2-5x+6 = 0
b. 3x2-2x+1 = 0
c. x2-3x+2 = 0
d. 2x2-3x+1 = 0
8. x2-3x+5 āĻāϰ āύā§āϝā§āύāϤāĻŽ āĻŽāĻžāύ- [DU : 2006-07]
a. 3
b. 5
c. 15/4
d. 11/4
9. x2-5x-1 = 0 āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞāĻĻā§āĻŦā§ āĻšāϤ⧠2 āĻāĻŽ āĻŽā§āϞāĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāĻŽā§āĻāϰāĻŖāĻāĻŋ āĻšāϞ- [DU : 2007-08]
a. x2+x+7 = 0
b. x2-x-7 = 0
c. x2+x-7 = 0
d. x2-x-7 = 0
10. 5+3x-x2 āĻāϰ āϏāϰā§āĻŦā§āĻā§āĻ āĻŽāĻžāύ- [DU : 2008-09]
a. 3
b. 11/4
c. 29/4
d. 27/4
11. x2-7x+12 = 0 āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞāĻĻā§āĻŦā§ Îą āĻāĻŦāĻ Î˛ āĻšāϞā§, Îą+β āĻāĻŦāĻ ÎąÎ˛ āĻŽā§āϞāĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāĻŽā§āĻāϰāĻŖ- [DU : 2009-10]
a. x2-19x+84 = 0
b. x2+14x+144 = 0
c. x2-14x+144 = 0
d. x2+19x-84 = 0
āĻĸāĻžāĻŦāĻŋāϰ āĻŦāĻŋāĻāϤ āĻŦāĻāϰā§āϰ āĻĒā§āϰāĻļā§āύā§āϰ āϏāĻŽāĻžāϧāĻžāύ :
1. āύāĻŋāϰā§āĻŖā§ā§ āϏāĻŽā§āĻāϰāĻŖ, -3x2-5x+1=0 [see example 4 (ii)]
â 3x2+5x-1 = 0
â´ ans. a
2. āĻāĻāĻžāύā§, Îą+β=4; ιβ=4 [See āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞ-āϏāĻšāĻ āϏāĻŽā§āĻĒāϰā§āĻ]
ⴠι3+β3 = (ι+β)3-3ιβ(ι+β)
= 16
â´ ans. c
3. āύāĻŋāϰā§āĻŖā§ā§ āϏāĻŽā§āĻāϰāĻŖ, -3x2-5x+1=0 [see example 4 (ii)]
â 3x2+5x-1 = 0
â´ ans. c
4. āĻŽā§āϞāĻĻā§āĻŦā§ āĻāĻāĻŋāϞ āĻšāĻŦā§ āϝāĻĻāĻŋ p2- 4 < 0
â p2 < 4 [see example 3 (c)]
â -2<p<2 āĻšā§
â´ ans. c
5. āύāĻŋāϰā§āĻŖā§ā§ āϏāĻŽā§āĻāϰāĻŖ, x2-5x+6=0
â´ ans.a
6. āĻŽā§āϞāĻĻā§āĻŦā§ āϏāĻŽāĻžāύ āĻšāĻŦā§ āϝāĻĻāĻŋ {4(k-2)}2-4.(k+1).2k=0 āĻšā§ [See example 3(a)]
â 16(k-2)2 = 8k(k+1)
â 2(k2-4k+4) = k2+k
â 2k2-8k+8 = k2+k
â k2-9k+8 = 0
â k = 1 or, 8 [use calculator/manually factorize through middle term process]
â´ ans.b
7. ι+β = 2; ιβ = 3; ⴠι+β+ιβ = 5 &, (ι+β)(ιβ) = 6 [see example 4 (iv)]
â´ āύāĻŋāϰā§āĻŖā§ā§ āϏāĻŽā§āĻāϰāĻŖ, x2-5x+6 = 0
â´ ans.a
8. âb/2a = 3/2
â´ f(3/2) = (3/2)2-3(3/2)+5 [see example 9]
= 11/4
â´ ans.d
10. Îą+β = 5; ιβ = -1 [See āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞ-āϏāĻšāĻ āϏāĻŽā§āĻĒāϰā§āĻ]
ⴠ(ι-2)(β-2) = ιβ-2(ι+β)+4 = -7
ⴠι-2+β-2 = 1
â´ x2-(Îą-2+β-2)x+(Îą-2)(β-2) = 0 [see āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖ āĻāĻ āύ]
â x2-x-7 = 0
â´ ans.d
10. âb/2a = 3/2
â´ f(3/2) = 5+3(3/2)-(3/2)2 = 29/4 [see example 9]
â´ ans.c
11. Îą+β = 7; ιβ = 12 [See āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞ-āϏāĻšāĻ āϏāĻŽā§āĻĒāϰā§āĻ]
ⴠι+β+ιβ = 19; ⴠ(ι+β)(ιβ) = 84
ⴠx2-(ι+β+ιβ)x+(ι+β)(ιβ) = 0 [see example 4 (iv)]
â x2-19x+84 = 0
â´ ans.a