āύāĻŋāĻ°ā§āĻŖāĻžā§ŸāĻ• (Determinants)

āϏāĻžāϧāĻžāϰāĻŖ āϧāĻžāϰāĻŖāĻžÂ 

  • āύāĻŋāĻ°ā§āĻŖāĻžā§ŸāĻ• (Determinants): āύāĻŋāĻ°ā§āĻŖāĻžā§ŸāĻ• āĻšāϞ āĻāĻ• āĻŦāĻŋāĻļ⧇āώ āϧāϰāύ⧇āϰ āĻĢāĻžāĻ‚āĻļāύ āϝāĻž āĻāĻ•āϟāĻŋ āĻŦāĻžāĻ¸ā§āϤāĻŦ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ āĻāĻ•āϟāĻŋ āĻŦāĻ°ā§āĻ— āĻŽā§āϝāĻžāĻŸā§āϰāĻŋāĻ•ā§āϏ⧇āϰ (Square Matrix) āϏāĻžāĻĨ⧇ āϏāĻŽā§āĻĒāĻ°ā§āĻ•āĻŋāϤ āĻ•āϰ⧇ āĨ¤ āϕ⧋āύ⧋ n×n āĻŦāĻ°ā§āĻ— āĻŽā§āϝāĻžāĻŸā§āϰāĻŋāĻ•ā§āϏ⧇āϰ āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āĻ•ā§āϰāĻŽāĻ“ n āĨ¤

 

āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āĻ…āϪ⧁āϰāĻžāĻļāĻŋ āĻ“ āϏāĻšāϗ⧁āĻŖāĻ• (Minor and cofactor of determinants) : āϝāĻĻāĻŋ D āϕ⧋āύ⧋ āĻŦāĻ°ā§āĻ— āĻŽā§āϝāĻžāĻŸā§āϰāĻŋāĻ•ā§āϏ āĻšā§Ÿ āϤāĻŦ⧇ āϤāĻžāϰ āϝ⧇āϕ⧋āύ⧋ āωāĻĒāĻžāĻĻāĻžāύ dij āĻāϰ āĻ…āϪ⧁āϰāĻžāĻļāĻŋāϕ⧇ M ij āĻĻā§āĻŦāĻžāϰāĻž āĻĒā§āϰāĻ•āĻžāĻļ āĻ•āϰāĻž āĻšā§Ÿ āĨ¤ Mij āĻšāϞ i āϤāĻŽ āϏāĻžāϰāĻŋ āĻ“ j āϤāĻŽ āĻ•āϞāĻžāĻŽ āĻŦāĻžāĻĻ⧇ āĻŦāĻžāĻ•āĻŋ āωāĻĒāĻžāĻĻāĻžāύāϗ⧁āϞ⧋ āĻĻā§āĻŦāĻžāϰāĻž āĻ—āĻ āĻŋāϤ āĻŦāĻ°ā§āĻ— āĻŽā§āϝāĻžāĻŸā§āϰāĻŋāĻ•ā§āϏ⧇āϰ āύāĻŋāĻ°ā§āĻŖāĻžā§ŸāĻ• āĨ¤ āϝ⧇āĻŽāύ :

D = $\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}$ āĻšāϞ⧇,

a1 āĻāϰ āĻ…āϪ⧁āϰāĻžāĻļāĻŋ = M11 = $\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}$ = $\begin{array}{ll}b_{2} & c_{2} \\ b_{3} & c_{3}\end{array}$ = b2c3 – b3c2

āĻ…āύ⧁āϰ⧂āĻĒāĻ­āĻžāĻŦ⧇, b1 āĻāϰ āĻ…āϪ⧁āϰāĻžāĻļāĻŋ = M12 = $\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}$ = $\begin{array}{ll}a_{2} & c_{2} \\ a_{3} & c_{3}\end{array}$ = a2c3 – a3c2

āĻ…āĻ°ā§āĻĨāĻžā§Ž, āϝāĻĻāĻŋ D āĻāϰ āϕ⧋āύ⧋ āωāĻĒāĻžāĻĻāĻžāύ⧇āϰ āĻŽāĻ§ā§āϝ āĻĻāĻŋā§Ÿā§‡ āĻāĻ•āϟāĻŋ āφāύ⧁āĻ­ā§‚āĻŽāĻŋāĻ• āĻ“ āĻāĻ•āϟāĻŋ āωāĻ˛ā§āϞāĻŽā§āĻŦ āϏāϰāϞāϰ⧇āĻ–āĻž āϟāĻžāύāĻž āϝāĻžā§Ÿ āϤāĻžāĻšāϞ⧇ āĻŦāĻžāĻ•āĻŋ āωāĻĒāĻžāĻĻāĻžāύāϗ⧁āϞ⧋ āĻĻā§āĻŦāĻžāϰāĻž āĻ—āĻ āĻŋāϤ āύāĻŋāĻ°ā§āĻŖāĻžā§ŸāĻ•āχ āĻšāϞ āϐ āωāĻĒāĻžāĻĻāĻžāύ⧇āϰ āĻ…āϪ⧁āϰāĻžāĻļāĻŋ āĨ¤

āφāĻŦāĻžāϰ, D āĻāϰ āϕ⧋āύ⧋ āωāĻĒāĻžāĻĻāĻžāύ dij āĻāϰ āϏāĻšāϗ⧁āĻŖāϕ⧇ Cij āĻĻā§āĻŦāĻžāϰāĻž āĻĒā§āϰāĻ•āĻžāĻļ āĻ•āϰāĻž āĻšā§Ÿ āϝ⧇āĻ–āĻžāύ⧇ Cij = (-1)i+jMij āĨ¤ āĻ…āĻ°ā§āĻĨāĻžā§Ž, āĻ…āϪ⧁āϰāĻžāĻļāĻŋāϰ āĻĒā§‚āĻ°ā§āĻŦ⧇ āϝāĻĨāĻžāϝ⧋āĻ—ā§āϝ āϚāĻŋāĻšā§āύ āĻŦāϏāĻžāϞ⧇ āϏāĻ‚āĻļā§āϞāĻŋāĻˇā§āϟ āωāĻĒāĻžāĻĻāĻžāύ⧇āϰ āϏāĻšāϗ⧁āĻŖāĻ• āĻĒāĻžāĻ“ā§ŸāĻž āϝāĻžā§Ÿ āĨ¤ āϝ⧇āĻŽāύ :

b1 āĻāϰ āϏāĻšāϗ⧁āĻŖāĻ• = $(-1)^{1+2} \mathrm{M}_{12}=-\begin{array}{cc}a_{2} & c_{2} \\ a_{3} & c_{3}\end{array}=-\left(\mathrm{a}_{2} \mathrm{C}_{3}-\mathrm{a}_{3} \mathrm{c}_{2}\right)$

  • āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āĻŦāĻŋāĻ¸ā§āϤ⧃āϤāĻŋ (Expansions of Determinant) : āϕ⧋āύ⧋ āĻŦāĻ°ā§āĻ— āĻŽā§āϝāĻžāĻŸā§āϰāĻŋāĻ•ā§āϏāϕ⧇ āĻāĻ•āϟāĻŋ āύāĻŋāĻ°ā§āĻĻāĻŋāĻˇā§āϟ āϏāĻžāϰāĻŋ āĻ•āĻŋāĻ‚āĻŦāĻž āĻ•āϞāĻžāĻŽ āĻŦāϰāĻžāĻŦāϰ āĻŦāĻŋāĻ¸ā§āϤ⧃āϤ āĻ•āϰ⧇ āĻāϰ āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āĻŽāĻžāύ āύāĻŋāĻ°ā§āϪ⧟ āĻ•āϰāĻž āĻšā§Ÿ āĨ¤ āϐ āύāĻŋāĻ°ā§āĻĻāĻŋāĻˇā§āϟ āĻ•āϞāĻžāĻŽā§‡āϰ/ āϏāĻžāϰāĻŋāϰ āĻĒā§āϰāϤāĻŋāϟāĻŋ āωāĻĒāĻžāĻĻāĻžāύāϕ⧇ āύāĻŋāϜ āύāĻŋāϜ āϏāĻšāϗ⧁āĻŖāĻ• āĻĻā§āĻŦāĻžāϰāĻž āϗ⧁āĻŖ āĻ•āϰ⧇ āϗ⧁āĻŖāĻĢāϞ⧇āϰ āĻŦā§€āϜāĻ—āĻžāĻŖāĻŋāϤāĻŋāĻ• āϏāĻŽāĻˇā§āϟāĻŋ āύāĻŋāϞ⧇ āωāĻ•ā§āϤ āĻŽā§āϝāĻžāĻŸā§āϰāĻŋāĻ•ā§āϏ⧇āϰ āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āĻŽāĻžāύ āĻĒāĻžāĻ“ā§ŸāĻž āϝāĻžā§Ÿ āĨ¤ āĻ…āĻ°ā§āĻĨāĻžā§Ž, A, n āĻŽāĻžāĻ¤ā§āϰāĻžāϰ āϕ⧋āύ⧋ āĻŦāĻ°ā§āĻ— āĻŽā§āϝāĻžāĻŸā§āϰāĻŋāĻ•ā§āϏ āĻšāϞ⧇, āϏāĻžāϰāĻŋ āĻŦāϰāĻžāĻŦāϰ āĻŦāĻŋāĻ¸ā§āϤ⧃āϤ āĻ•āϰ⧇ āĻĒāĻžāχ,

det(A) = a11c11+a12c12+ ............ +a1nc1n

           = a21c21+a22c22+ ............ +a2nc2n

           ... ... ... ... ... ... ... ... ...

           ... ... ... ... ... ... ... ... ...

           = an1cn1+an2cn2+ ............ +amncnn

āĻ…āύ⧁āϰ⧂āĻĒāĻ­āĻžāĻŦ⧇, āĻ•āϞāĻžāĻŽ āĻŦāϰāĻžāĻŦāϰ āĻŦāĻŋāĻ¸ā§āϤ⧃āϤ āĻ•āϰ⧇ āĻĒāĻžāχ,

det(A) = a11c11+a12c12+ ............ +a1nc1n

          = a21c21+a22c22+ ............ +a2nc2n

          ... ... ... ... ... ... ... ... ...

          ... ... ... ... ... ... ... ... ...

          = an1cn1+an2cn2+ ............ +amncnn

āωāĻĻāĻžāĻšāϰāĻŖāĻ¸ā§āĻŦāϰ⧂āĻĒ, $\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & C_{3}\end{array}$  āĻŽā§āϝāĻžāĻŸā§āϰāĻŋāĻ•ā§āϏāϟāĻŋāϰ āύāĻŋāĻ°ā§āĻŖāĻžā§ŸāĻ• āύāĻŋāĻ°ā§āĻŖā§Ÿā§‡āϰ āϜāĻ¨ā§āϝ āĻĒā§āϰāĻĨāĻŽ āϏāĻžāϰāĻŋ āĻŦāϰāĻžāĻŦāϰ āĻŦāĻŋāĻ¸ā§āϤ⧃āϤ āĻ•āϰ⧇ āĻĒāĻžāχ,

$\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & C_{3}\end{array}$

= $\mathrm{a}_{1} \begin{array}{cc}b_{2} & c_{2} \\ b_{3} & c_{3}\end{array}$ - $\mathrm{b}_{1} \begin{array}{ll}a_{2} & c_{2} \\ a_{3} & c_{3}\end{array}$ + $\mathrm{c}_{1} \begin{array}{ll}a_{2} & b_{2} \\ a_{3} & b_{3}\end{array}$

= a1 (b2c3 – b3c2) - b1 (a2c3 – a3c2) + c 1 (a2b3 – a3b2)

 

āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āϧāĻ°ā§āĻŽ (Properties of Determinants) 

ā§§. āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āϕ⧋āύ⧋ āϏāĻžāϰāĻŋ āĻŦāĻž āϕ⧋āύ⧋ āĻ•āϞāĻžāĻŽā§‡āϰ āωāĻĒāĻžāĻĻāĻžāύāϗ⧁āϞ⧋ āĻļā§‚āĻŖā§āϝ āĻšāϞ⧇ āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āĻŽāĻžāύ āĻļā§‚āĻŖā§āϝ āĻšā§Ÿ āĨ¤

⧍. āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āϏāĻžāϰāĻŋ āĻ“ āĻ•āϞāĻžāĻŽāϏāĻŽā§‚āĻš āĻĒāϰāĻ¸ā§āĻĒāϰ āĻ¸ā§āĻĨāĻžāύ āĻŦāĻŋāύāĻŋāĻŽā§Ÿ āĻ•āϰāϞ⧇ āĻ…āĻ°ā§āĻĨāĻžā§Ž āϏāĻžāϰāĻŋāϗ⧁āϞ⧋ āĻ•āϞāĻžāĻŽā§‡ āĻāĻŦāĻ‚ āĻ•āϞāĻžāĻŽāϗ⧁āϞ⧋ āϏāĻžāϰāĻŋāϤ⧇ āĻĒāϰāĻŋāĻŖāϤ āĻ•āϰāϞ⧇ āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āĻŽāĻžāύ āĻ…āĻĒāϰāĻŋāĻŦāĻ°ā§āϤāĻŋāϤ āĻĨāĻžāϕ⧇ āĨ¤

ā§Š. āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āĻĒāĻžāĻļāĻžāĻĒāĻžāĻļāĻŋ āĻĻ⧁āϟāĻŋ āĻ•āϞāĻžāĻŽ āĻ•āĻŋāĻ‚āĻŦāĻž āĻĻ⧁āϟāĻŋ āϏāĻžāϰāĻŋ āĻĒāϰāĻ¸ā§āĻĒāϰ āĻ¸ā§āĻĨāĻžāύ āĻŦāĻŋāύāĻŋāĻŽā§Ÿ āĻ•āϰāϞ⧇ āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āϚāĻŋāĻšā§āύ āĻĒāϰāĻŋāĻŦāĻ°ā§āϤāĻŋāϤ āĻšā§Ÿ āĻ•āĻŋāĻ¨ā§āϤ⧁ āϏāĻžāĻ‚āĻ–ā§āϝāĻŽāĻžāύ āĻ…āĻĒāϰāĻŋāĻŦāĻ°ā§āϤāĻŋāϤ āĻĨāĻžāϕ⧇ āĨ¤

ā§Ē. āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āĻĻ⧁āϟāĻŋ āĻ•āϞāĻžāĻŽ āĻ•āĻŋāĻ‚āĻŦāĻž āĻĻ⧁āϟāĻŋ āϏāĻžāϰāĻŋ āĻ…āĻ­āĻŋāĻ¨ā§āύ (Identical) āĻšāϞ⧇ āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āĻŽāĻžāύ āĻļā§‚āĻ¨ā§āϝ āĻšā§Ÿ āĨ¤

ā§Ģ. āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āϕ⧋āύ⧋ āϏāĻžāϰāĻŋ āĻŦāĻž āĻ•āϞāĻžāĻŽā§‡āϰ āωāĻĒāĻžāĻĻāĻžāύāϗ⧁āϞ⧋āϕ⧇ āϝāĻĨāĻžāĻ•ā§āϰāĻŽā§‡ āĻ…āĻĒāϰ āϏāĻžāϰāĻŋ āĻŦāĻž āĻ•āϞāĻžāĻŽā§‡āϰ āĻ…āύ⧁āϰ⧂āĻĒ āωāĻĒāĻžāĻĻāĻžāύ⧇āϰ āϏāĻšāϗ⧁āĻŖāĻ• āĻĻā§āĻŦāĻžāϰāĻž āϗ⧁āĻŖ āĻ•āϰāĻž āĻšāϞ⧇ āĨ¤ āϗ⧁āĻŖāĻĢāϞāϗ⧁āϞ⧋āϰ āϏāĻŽāĻˇā§āϟāĻŋ āĻļā§‚āĻ¨ā§āϝ āĻšā§Ÿ āĨ¤

ā§Ŧ. āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āϕ⧋āύ⧋ āϏāĻžāϰāĻŋ āĻŦāĻž āĻ•āϞāĻžāĻŽā§‡āϰ āĻĒā§āϰāĻ¤ā§āϝ⧇āĻ•āϟāĻŋ āωāĻĒāĻžāĻĻāĻžāύāϕ⧇ āϕ⧋āύ āĻ¸ā§āĻĨāĻŋāϰ āϏāĻ‚āĻ–ā§āϝāĻž āĻĻā§āĻŦāĻžāϰāĻž āϗ⧁āĻŖ āĻ•āϰāϞ⧇, āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āĻŽāĻžāύāϕ⧇āĻ“ āϏ⧇āχ āĻ¸ā§āĻĨāĻŋāϰ āϏāĻ‚āĻ–ā§āϝāĻž āĻĻā§āĻŦāĻžāϰāĻž āϗ⧁āĻŖ āĻ•āϰāĻž āĻšā§Ÿ āĨ¤

ā§­. āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āϕ⧋āύ⧋ āϏāĻžāϰāĻŋ āĻŦāĻž āĻ•āϞāĻžāĻŽā§‡āϰ āĻĒā§āϰāϤāĻŋāϟāĻŋ āωāĻĒāĻžāĻĻāĻžāύāϕ⧇ āϕ⧋āύ⧋ āĻ¸ā§āĻĨāĻŋāϰ āϏāĻ‚āĻ–ā§āϝāĻž āĻĻā§āĻŦāĻžāϰāĻž āϗ⧁āĻŖ āĻ•āϰāϞ⧇ āϝāĻĻāĻŋ āϝāĻĨāĻžāĻ•ā§āϰāĻŽā§‡ āĻ…āĻ¨ā§āϝ āϕ⧋āύ⧋ āϏāĻžāϰāĻŋ āĻŦāĻž āĻ•āϞāĻžāĻŽ āĻĒāĻžāĻ“ā§ŸāĻž āϝāĻžā§Ÿ āϤāĻŦ⧇ āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āĻŽāĻžāύ āĻļā§‚āĻ¨ā§āϝ āĻšā§ŸāĨ¤

ā§Ž. āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āϕ⧋āύ⧋ āϏāĻžāϰāĻŋ āĻŦāĻž āĻ•āϞāĻžāĻŽā§‡āϰ āĻĒā§āϰāϤāĻŋāϟāĻŋ āωāĻĒāĻžāĻĻāĻžāύ āĻĻ⧁āχāϟāĻŋ āĻĒāĻĻ āύāĻŋā§Ÿā§‡ āĻ—āĻ āĻŋāϤ āĻšāϞ⧇ āύāĻŋāĻ°ā§āĻŖāĻžā§ŸāĻ•āϟāĻŋāϕ⧇ āĻ…āĻ¨ā§āϝ āĻĻ⧁āϟāĻŋ āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āϏāĻŽāĻˇā§āϟāĻŋāϰ⧂āĻĒ⧇ āĻĒā§āϰāĻ•āĻžāĻļ āĻ•āϰāĻž āϝāĻžā§Ÿ āĨ¤

⧝. āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āϕ⧋āύ⧋ āϏāĻžāϰāĻŋ āĻŦāĻž āĻ•āϞāĻžāĻŽā§‡āϰ āĻĒā§āϰāϤāĻŋāϟāĻŋ āωāĻĒāĻžāĻĻāĻžāύ āϝāĻĨāĻžāĻ•ā§āϰāĻŽā§‡ āĻ…āĻ¨ā§āϝ āĻāĻ•āϟāĻŋ āϏāĻžāϰāĻŋ āĻŦāĻž āĻ•āϞāĻžāĻŽā§‡āϰ āĻ…āύ⧁āϰ⧂āĻĒ āωāĻĒāĻžāĻĻāĻžāύ⧇āϰ āĻāĻ•āϟāĻŋ āϗ⧁āĻŖāĻŋāϤāĻ• āĻĻā§āĻŦāĻžāϰāĻž āĻŦ⧃āĻĻā§āϧāĻŋ āĻŦ āĻšā§āϰāĻžāϏ āĻ•āϰāĻž āĻšāϞ⧇ āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āĻŽāĻžāύ āĻ…āĻĒāϰāĻŋāĻŦāĻ°ā§āϤāĻŋāϤ āĻĨāĻžāϕ⧇ āĨ¤

 

āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āϏāĻžāĻšāĻžāĻ¯ā§āϝ⧇ āϏāϰāϞ āϏāĻŽā§€āĻ•āϰāĻŖ āĻœā§‹āĻŸā§‡āϰ āϏāĻŽāĻžāϧāĻžāύ

ā§§. āϏāĻŽā§€āĻ•āϰāĻŖ āĻœā§‹āĻŸā§‡āϰ āϚāϞāĻ•āϏāĻŽā§‚āĻšā§‡āϰ āϏāĻšāĻ—āϗ⧁āϞ⧋ āĻĒāĻžāĻļāĻžāĻĒāĻžāĻļāĻŋ āĻ•āϞāĻžāĻŽ āĻšāĻŋāϏ⧇āĻŦ⧇ āύāĻŋā§Ÿā§‡ āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āĻŽāĻžāύ āύāĻŋāĻ°ā§āϪ⧟ āĻ•āϰāϤ⧇ āĻšāĻŦ⧇ āĨ¤ āωāĻ•ā§āϤ āύāĻŋāĻ°ā§āĻŖāĻžā§ŸāĻ•āϕ⧇ D āĻŦāĻž Δ āĻĻā§āĻŦāĻžāϰāĻž āϏ⧂āϚāĻŋāϤ āĻ•āϰāĻž āĻšā§Ÿ āĨ¤

⧍. āĻāϰāĻĒāϰ āωāĻ•ā§āϤ āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āĻĒā§āϰāĻĨāĻŽ āĻ•āϞāĻžāĻŽāϕ⧇ āϏāĻŽā§€āĻ•āϰāĻŖāĻœā§‹āĻŸā§‡āϰ āĻ§ā§āϰ⧁āĻŦ āĻĒāĻĻ āĻĻā§āĻŦāĻžāϰāĻž āĻĒā§āϰāϤāĻŋāĻ¸ā§āĻĨāĻžāĻĒāĻŋāϤ āĻ•āϰ⧇ āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āĻŽāĻžāύ āύāĻŋāϞ⧇ āĻĒā§āϰāĻĨāĻŽ āĻ•āϞāĻžāĻŽā§‡āϰ āϏāĻ‚āĻļā§āϞāĻŋāĻˇā§āϟ āϚāϞāϕ⧇āϰ āϜāĻ¨ā§āϝ āĻāĻ•āϟāĻŋ āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āĻŽāĻžāύ āĻĒāĻžāĻ“ā§ŸāĻž āϝāĻžāĻŦ⧇ āĨ¤

ā§Š. āĻāĻ­āĻžāĻŦ⧇ āĻĒā§āϰāϤāĻŋ āĻ•āϞāĻžāĻŽā§‡āϰ āϜāĻ¨ā§āϝ āĻĒā§āϰāĻ•ā§āϰāĻŋ⧟āĻž (ii) āĻĒ⧁āύāϰāĻžāĻŦ⧃āĻ¤ā§āϤāĻŋ āĻ•āϰ⧇ āϝāĻĨāĻžāĻ•ā§āϰāĻŽā§‡ D x/Δx, Dy/Δy, Dz/Δz ...... āχāĻ¤ā§āϝāĻžāĻĻāĻŋ āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āĻŽāĻžāύ āĻĒāĻžāĻ“ā§ŸāĻž āϝāĻžāĻŦ⧇ āĨ¤

ā§Ē. x/Δx = y/Δy = z/Δz = ...... = 1/Δ āχāĻ¤ā§āϝāĻžāĻĻāĻŋāϰ āĻŽāĻžāύ āύāĻŋāĻ°ā§āϪ⧟ āĻ•āϰāĻž āϝāĻžā§Ÿ āĨ¤

 

āĻ—āĻžāĻŖāĻŋāϤāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻžāϰ āωāĻĻāĻžāĻšāϰāĻŖ āĻ“ āϏāĻŽāĻžāϧāĻžāĻ¨Â 

1. āĻŽāĻžāύ āύāĻŋāĻ°ā§āϪ⧟ āĻ•āϰ : $\begin{array}{lll}13 & 16 & 19 \\ 14 & 17 & 20 \\ 15 & 18 & 21\end{array}$

āĻāĻ–āĻžāύ⧇, $\begin{array}{lll}13 & 16 & 19 \\ 14 & 17 & 20 \\ 15 & 18 & 21\end{array}$

= $\begin{array}{lll}13 & 3 & 3 \\ 14 & 3 & 3 \\ 15 & 3 & 3\end{array}$

= 0 [see āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āϧāĻ°ā§āĻŽ ā§Ē]

āĻ…āĻĨāĻŦāĻž, āϏāϰāĻžāϏāϰāĻŋ Calculator āĻĒā§āĻ°ā§Ÿā§‹āĻ— āĻ•āϰ⧇āĻ“ āĻŽāĻžāύ āύāĻŋāĻ°ā§āϪ⧟ āĻ•āϰāĻž āϝāĻžā§Ÿ āĨ¤ [see Determinants of matrix in Matrix chapter]

2. $\begin{array}{cc}2 & a+2 \\ a-4 & 8\end{array}$ āĻāϰ āĻŽāĻžāύ āĻļā§‚āĻ¨ā§āϝ āĻšāϞ⧇ a āĻāϰ āĻŽāĻžāύ āĻ•āϤ?

āĻāĻ–āĻžāύ⧇, $\begin{array}{cc}2 & a+2 \\ a-4 & 8\end{array}=0$

⇒ 16 – (a+2)(a-4) = 0

⇒ 16 – (a2+2a-4a-8) = 0

⇒ 16- a2+2a+8 = 0

⇒ - a2+2a+24 = 0

⇒ a2-2a-24 = 0

⇒ a2-6a+4a-24 = 0

⇒ (a-6)(a+4) = 0

⇒ a = 6, -4

3. āĻŽāĻžāύ āύāĻŋāĻ°ā§āϪ⧟ āĻ•āϰ :

a. $\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}$

 

b. $\begin{array}{ccc}1 & -w & w^{2} \\ -w & w^{2} & 1 \\ w^{2} & 1 & -w\end{array}$ āϝ⧇āĻ–āĻžāύ⧇ w āĻšāϞ 1 āĻāϰ āĻāĻ•āϟāĻŋ āĻ•āĻžāĻ˛ā§āĻĒāύāĻŋāĻ• āϘāύāĻŽā§‚āϞ

 

c. $\begin{array}{ccc}1 & 1 & 1 \\ 1 & p & p^{2} \\ 1 & p^{2} & p^{4}\end{array}$

 

d. $\begin{array}{lll}1 & x & y+z \\ 1 & y & z+x \\ 1 & z & x+y\end{array}$

 

e. $\begin{array}{ccc}a & b & c \\ a^{2} & b^{2} & c^{2} \\ a^{3} & b^{3} & c^{3}\end{array}$

 

f.  $\begin{array}{ccc}1+x_{1} & x_{2} & x_{3} \\ x_{1} & 1+x_{2} & x_{3} \\ x_{1} & x_{2} & 1+x_{3}\end{array}$ 

 

g. $\begin{matrix}\log{x}&\log{y}&\log{z}\\\log{2x}&\log{2y}&\log{2z}\\\log{3x}&\log{3y}&\log{3z}\\\end{matrix}$

āĻĒā§āϰāĻĨāĻŽā§‡āχ āĻŦāĻŋāĻ¸ā§āϤāĻžāϰ āύāĻž āĻ•āϰ⧇ āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āĻŦāĻŋāĻ­āĻŋāĻ¨ā§āύ āϧāĻ°ā§āĻŽ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰ⧇ āϏāĻ‚āĻ•ā§āώ⧇āĻĒ⧇ āĻ“ āϏāĻšāĻœā§‡ āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āĻŽāĻžāύ āύāĻŋāĻ°ā§āϪ⧟ āĻ•āϰāĻž āϝāĻžā§Ÿ āĨ¤ āϤāĻŦ⧇ āĻ āĻŋāĻ• āϕ⧋āύ āϧāĻ°ā§āĻŽāϟāĻŋ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰāϞ⧇ āĻŽāĻžāύ āύāĻŋāĻ°ā§āϪ⧟ āĻ…āĻĒ⧇āĻ•ā§āώāĻžāĻ•ā§ƒāϤ/ āĻ…āϧāĻŋāĻ•āϤāϰ āϏāĻšāϜ āĻšāĻŦ⧇ āϤāĻž āϕ⧋āύ āĻ—āĻā§ŽāĻŦāĻžāρāϧāĻž āύāĻŋ⧟āĻŽā§‡āϰ āĻĻā§āĻŦāĻžāϰāĻž āύāĻŋāĻ°ā§āĻĻāĻŋāĻˇā§āϟ āύ⧟, āĻ…āĻ°ā§āĻĨāĻžā§Ž āϤāĻž āĻ…āύ⧇āĻ•āĻžāĻ‚āĻļ⧇āχ āĻļāĻŋāĻ•ā§āώāĻžāĻ°ā§āĻĨā§€āϰ āĻ¸ā§āĻŦāĻœā§āĻžāĻž(?) (Intuition) āĻ“ āĻŦāĻŋāĻļā§āϞ⧇āώāĻŖ āĻ•ā§āώāĻŽāϤāĻž (Analytical ability) āĻāϰ āωāĻĒāϰ āύāĻŋāĻ°ā§āĻ­āϰ āĻ•āϰ⧇ āĨ¤ āϤāĻŦ⧇ āϏāĻŦāϏāĻŽā§Ÿāχ āĻĒā§āϰāĻĨāĻŽā§‡ āĻšā§‡āĻˇā§āϟāĻž āĻ•āϰāϤ⧇ āĻšāĻŦ⧇ cmmon/āϏāĻžāϧāĻžāϰāĻŖ āωāĻĒāĻžāĻĻāĻžāύ āϗ⧁āϞ⧋ āĻŦ⧇āϰ āĻ•āϰ⧇ āφāύāĻžāϰ āĨ¤ āĻāϰāĻĒāϰ āĻĻ⧇āĻ–āϤ⧇ āĻšāĻŦ⧇ āϝ⧇ āĻ—āĻžāĻŖāĻŋāϤāĻŋāĻ• āĻĒā§āϰāĻ•ā§āϰāĻŋ⧟āĻžāϰ āĻŽāĻžāĻ§ā§āϝāĻŽā§‡ āĻĒāĻžāĻļāĻžāĻĒāĻžāĻļāĻŋ āĻ•āϞāĻžāĻŽ āĻŦāĻž āϏāĻžāϰāĻŋāϤ⧇ āĻāĻ•āχ āωāĻĒāĻžāĻĻāĻžāύ āφāύāĻž āϝāĻžā§Ÿ āĻ•āĻŋāύāĻž, āϕ⧇āύāύāĻž āϏ⧇āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ āϏāϰāĻžāϏāϰāĻŋ āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āĻŽāĻžāύ āĻļā§‚āĻŖā§āϝ āĻšā§Ÿā§‡ āϝāĻžāĻŦ⧇ āĨ¤ āĻ…āĻĨāĻŦāĻž āĻšā§‡āĻˇā§āϟāĻž āĻ•āϰāϤ⧇ āĻšāĻŦ⧇ āϕ⧋āύ āύāĻŋāĻ°ā§āĻĻāĻŋāĻˇā§āϟ āϏāĻžāϰāĻŋ āĻŦāĻž āĻ•āϞāĻžāĻŽā§‡āϰ āϏāĻ°ā§āĻŦā§‹āĻšā§āϚ āϏāĻ‚āĻ–ā§āϝāĻ• āωāĻĒāĻžāĻĻāĻžāύāϕ⧇ āĻļā§‚āĻŖā§āϝ⧇ āĻĒāϰāĻŋāĻŖāϤ āĻ•āϰāĻžāϰ āĨ¤ āϏ⧇āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ āĻŦāĻŋāĻ¸ā§āϤ⧃āϤāĻŋāϤ⧇ āωāĻĒāĻžāĻĻāĻžāύāϏāĻ‚āĻ–ā§āϝāĻž āĻ•āĻŽā§‡ āϝāĻžā§Ÿ āĻĢāϞ⧇ āϏāĻšāϜ āϏāϰāϞ⧀āĻ•āϰāĻŖ āϏāĻŽā§āĻ­āĻŦ āĻšā§Ÿ āĨ¤

a. āĻāĻ–āĻžāύ⧇, $\begin{array}{ccc}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}$

= $\begin{array}{ccc}0 & a-b & a^{2}-b^{2} \\ 0 & b-c & b^{2}-c^{2} \\ 1 & c & c^{2}\end{array}$ [r1′ = r1-r2; r2′ = r 2-r3]

=(a-b)(b-c) $\begin{array}{ccc}0 & 1 & a+b \\ 0 & 1 & b+c \\ 1 & c & c^{2}\end{array}$ [r1 āĻĨ⧇āϕ⧇ (a-b) āĻāĻŦāĻ‚ r2 āĻĨ⧇āϕ⧇ (b-c) common āύāĻŋā§Ÿā§‡ ]

= (a-b)(b-c)(b+c-a-b) [c1 āĻŦāϰāĻžāĻŦāϰ āĻŦāĻŋāĻ¸ā§āϤ⧃āϤ āĻ•āϰ⧇]

= (a-b)(b-c)(c-a)

b. āĻāĻ–āĻžāύ⧇, $\begin{array}{ccc}1 & -w & w^{2} \\ -w & w^{2} & 1 \\ w^{2} & 1 & -w\end{array}$

= $\begin{array}{ccc}1 & 0 & 0 \\ -w & 0 & 1+w^{3} \\ w^{2} & 1+w^{3} & 0\end{array}$ [c2′ = c2+c1-w; c3′ = c 3+c2-w]

= $\begin{array}{ccc}1 & 0 & 0 \\ -w & 0 & 2 \\ w^{2} & 2 & 0\end{array}$ [âˆĩ w3 = 1]

= 1(0-4) [r1 āĻŦāϰāĻžāĻŦāϰ āĻŦāĻŋāĻ¸ā§āϤ⧃āϤ āĻ•āϰ⧇]

= -4

c. āĻāĻ–āĻžāύ⧇, $\begin{array}{ccc}1 & 1 & 1 \\ 1 & p & p^{2} \\ 1 & p^{2} & p^{4}\end{array}$

= $\begin{array}{ccc}1 & 0 & 0 \\ 1 & p-1 & p^{2}-p \\ 1 & p^{2}-1 & p^{4}-p^{2}\end{array}$ [c2′ = c2-c1; c3′ = c 3-c2]

= $\begin{array}{cc}p-1 & p(p-1) \\ p^{2}-1 & p^{2}\left(p^{2}-1\right)\end{array}$ [r1 āĻŦāϰāĻžāĻŦāϰ āĻŦāĻŋāĻ¸ā§āϤ⧃āϤ āĻ•āϰ⧇]

= (p-1)(p2-1) $\begin{array}{cc}1 & p \\ 1 & p^{2}\end{array}$

= (p-1)(p2-1)(p2-p)

= p(p-1)(p2-1)

 

d. āĻāĻ–āĻžāύ⧇, $\begin{array}{ccc}1 & x & y+z \\ 1 & y & z+x \\ 1 & Z & x+y\end{array}$

= $\begin{array}{ccc}1 & x & x+y+z \\ 1 & y & x+y+z \\ 1 & Z & x+y+z\end{array}$ [c3′ = c2+c3]

= (x+y+z) $\begin{array}{lll}1 & x & 1 \\ 1 & y & 1 \\ 1 & Z & 1\end{array}$

= 0 [see āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āϧāĻ°ā§āĻŽ iv]

e. āĻāĻ–āĻžāύ⧇, $\begin{array}{ccc}a & b & c \\ a^{2} & b^{2} & c^{2} \\ a^{3} & b^{3} & c^{3}\end{array}$

= $\begin{array}{cccc} & 1 & 1 & 1 \\ a b c & a & b & c \\ & a^{2} & b^{2} & c^{2}\end{array}$

= $\begin{array}{rll} & 1 & a & a^{2} \\ a b c & 1 & b & b^{2} \\ & 1 & c & c^{2}\end{array}$ [āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āϧāĻ°ā§āĻŽ ii]

= abc(a-b)(b-c)(c-a) [see example 3(a)]

f. āĻāĻ–āĻžāύ⧇, $\begin{array}{ccc}1+x_{1} & x_{2} & x_{3} \\ x_{1} & 1+x_{2} & x_{3} \\ x_{1} & x_{2} & 1+x_{3}\end{array}$

= $\begin{array}{ccc}1+x_{1}+x_{2}+x_{3} & x_{2} & x_{3} \\ 1+x_{1}+x_{2}+x_{3} & 1+x_{2} & x_{3} \\ 1+x_{1}+x_{2}+x_{3} & x_{2} & 1+x_{3}\end{array}$ [c1′ = c1+c2+c3]

= (1+x1+x2+x3) $\begin{array}{ccc}1 & x_{2} & x_{3} \\ 1 & 1+x_{2} & x_{3} \\ 1 & x_{2} & 1+x_{3}\end{array}$

= (1+x1+x2+x3) $\begin{array}{ccc}0 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & x_{2} & 1+x_{3}\end{array}$ [r1′ = r1-r2; r2′ = r 2-r3]

= (1+x1+x2+x3)1(1-0) [c1 āĻŦāϰāĻžāĻŦāϰ āĻŦāĻŋāĻ¸ā§āϤ⧃āϤ āĻ•āϰ⧇]

= 1+x1+x2+x3

 

g. āĻāĻ–āĻžāύ⧇, $\begin{array}{ccc}\log x & \log y & \log z \\ \log 2 x & \log 2 y & \log 2 z \\ \log 3 x & \log 3 y & \log 3 z\end{array}$

= $\begin{array}{ccc}\log x & \log y & \log z \\ \log 2 x-\log x & \log 2 y-\log y & \log 2 z-\log z \\ \log 3 x-\log 2 x & \log 3 y-\log 2 y & \log 3 z-\log 2 z\end{array}$ [r2′ = r2-r1; r3′ = r 3-r2]

= $\begin{array}{lcc}\log x & \log y & \log z \\ \log 2 & \log 2 & \log 2 \\ \log 3 / 2 & \log 3 / 2 & \log 3 / 2\end{array}$ [âˆĩ logm-logn = log(m/n)]

= log2.log(3/2) $\begin{array}{ccc}\log x & \log y & \log z \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}$

= 0 [see āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āϧāĻ°ā§āĻŽ iv]

4. āϏāĻŽāĻžāϧāĻžāύ āĻ•āϰ : x+y-z = 3

2x+3y+z = 10

3x-y-7z = 1

āĻāĻ–āĻžāύ⧇, D = Δ = $\begin{array}{ccc}1 & 1 & -1 \\ 2 & 3 & 1 \\ 3 & -1 & -7\end{array}$ = 1(-21+1)-1(-14-3)-1(-2-9) = 8

Dx = Δx = $\begin{array}{ccc}3 & 1 & -1 \\ 10 & 3 & 1 \\ 1 & -1 & -7\end{array}$ = 3(-21+1)-1(-70-1)-(-10-3) = 24

Dy = Δy = $\begin{array}{ccc}3 & 1 & -1 \\ 10 & 3 & 1 \\ 1 & -1 & -7\end{array}$ = 1(-70-1)-3(-14-3)-1(2-30) = 8

Dz = Δz = $\begin{array}{ccc}1 & 3 & -1 \\ 2 & 10 & 1 \\ 3 & 1 & -7\end{array}$ = 1(3+10)-1(2-30)+3(-2-9) = 8

∴ x = Dx/D = Δx/Δ = 3

∴ y = Dy/D = Δy/Δ = 3

∴ z = Dz/D = Δz/Δ = 3

Calculator Techniques :

2 āĻŦāĻž 3 āϚāϞāĻ•āĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āϏāϰāϞ āϏāĻŽā§€āĻ•āϰāĻŖāĻœā§‹āĻŸā§‡āϰ āϏāĻŽāĻžāϧāĻžāύ Calculator āĻ āύāĻŋāĻ°ā§āϪ⧟ āĻ•āϰāĻž āϝāĻžā§Ÿ :

1. Equation mode āĻ āϝ⧇āϤ⧇ āϚāĻžāĻĒ⧁āύ- $$
\begin{array}{|c|c|}
\hline \text { MODE } & \text { MODE } & \text { MODE } & 1 \\
\hline
\end{array}
$$

2. āϚāϞāĻ• āϏāĻ‚āĻ–ā§āϝāĻž Input āĻ•āϰ⧁āύ āĨ¤ āϝ⧇āĻŽāύ : Example 4 āĻ āϚāϞāĻ• āϤāĻŋāύāϟāĻŋ x,y,z āĨ¤ ∴ āϚāĻžāĻĒ⧁āύ- 3

3. āϤāĻŋāύāϟāĻŋ āϚāϞāĻ•āĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āϏāĻŽā§€āĻ•āϰāĻŖ calculator āĻ āύāĻŋāĻšā§‡āϰ āφāĻ•ā§ƒāϤāĻŋāϤ⧇ Input āĻ•āϰāϤ⧇ āĻšā§Ÿ-

a1x+b1y+c1z = d1

a2x+b2y+c2z = d2

a3x+b3y+c3z = d3

āϝ⧇āĻŽāύ : Example 4 āĻāϰ āϚāϞāĻ•āϏāĻŽā§‚āĻšā§‡āϰ āϏāĻšāĻ—āϗ⧁āϞ⧋ Input āĻ•āϰāϤ⧇ āϚāĻžāĻĒ⧁āύ-

determinants-calculator-tips-1

āĻĸāĻžāĻŦāĻŋāϰ āĻŦāĻŋāĻ—āϤ āĻŦāĻ›āϰ⧇āϰ āĻĒā§āϰāĻļā§āύ āĻ“ āϏāĻŽāĻžāϧāĻžāĻ¨Â 

āĻĸāĻžāĻŦāĻŋāϰ āĻŦāĻŋāĻ—āϤ āĻŦāĻ›āϰ⧇āϰ āĻĒā§āϰāĻļā§āύ :

1. $\begin{array}{ccc}2 & -1 & 5 \\ 4 & 3 & -2 \\ 1 & 0 & 6\end{array}$ āύāĻŋāĻ°ā§āĻŖāĻžā§ŸāĻ•āϟāĻŋāϰ 0 āĻāϰ āϏāĻšāϗ⧁āĻŖāĻ• āĻ•āϤ?

a. 18

b. -24

c. 16

d. 24

2. $\begin{array}{lll}10 & 11 & 12 \\ 20 & 21 & 24 \\ 10 & 10 & 10\end{array}$ āĻāϰ āĻŽāĻžāύ āĻ•āϤ?

a. 10

b. 20

c. 1

d. 0

3. $\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & k\end{array}$ āύāĻŋāĻ°ā§āĻŖāĻžā§ŸāĻ•āϟāĻŋāϰ āĻŽāĻžāύ 2 ; k āĻāϰ āĻŽāĻžāύ āĻ•āϤ?

a. 9

b. 8

c. 7

d. 6

4. $\begin{array}{lc}\beta & 1 \\ -5 & \beta+4\end{array}$ āύāĻŋāĻ°ā§āĻŖāĻžā§ŸāĻ•āϟāĻŋāϰ āĻŽāĻžāύ āĻļā§‚āĻ¨ā§āϝ āĻšāϞ⧇, β āĻāϰ āĻŽāĻžāύ āĻ•āϤ?

a. 5 āĻ…āĻĨāĻŦāĻž 0

b. 6 āĻ…āĻĨāĻŦāĻž 2

c. 5 āĻ…āĻĨāĻŦāĻž -3

d. 1 āĻ…āĻĨāĻŦāĻž -3

5. $\begin{array}{ccc}1 & 1 & 1 \\ x & a & b \\ x^{2} & a^{2} & b^{2}\end{array}$ āĻšāϞ⧇

a. –a āĻŦāĻž b

b. a āĻŦāĻž -b

c. –a āĻŦāĻž -b

d. a āĻŦāĻž -b

6. $\begin{array}{ccc}x+y & x & y \\ x & x+z & z \\ y & z & y+z\end{array}$ āύāĻŋāĻ°ā§āĻŖāĻžā§ŸāĻ•āϟāĻŋāϰ āĻŽāĻžāύ-

a. 4xyz

b. x2yz

c. xy2z

d. xyz2

7. $\begin{array}{cc}a-3 & -1 \\ -8 & a-4\end{array}$ āύāĻŋāĻ°ā§āĻŖāĻžā§ŸāĻ•āϟāĻŋāϰ āĻŽāĻžāύ āĻļā§‚āĻ¨ā§āϝ āĻšāϞ⧇ a āĻāϰ āĻŽāĻžāύ-

a. 4 or -5

b. 5 or -4

c. 3

d. 10

 

8. w āϝāĻĻāĻŋ 1 āĻāϰ āĻāĻ•āϟāĻŋ āϘāύāĻŽā§‚āϞ āĻšā§Ÿ, āϤāĻŦ⧇ āĻĒā§āϰāĻĻāĻ¤ā§āϤ āύāĻŋāĻ°ā§āĻŖāĻžā§ŸāĻ•āϟāĻŋāϰ āĻŽāĻžāύ-

$\begin{array}{ccc}1 & w & w^{2} \\ w & w^{2} & 1 \\ w^{2} & 1 & w\end{array}$

a. 0

b. 1

c. w

d. w2

 

āĻĸāĻžāĻŦāĻŋāϰ āĻŦāĻŋāĻ—āϤ āĻŦāĻ›āϰ⧇āϰ āĻĒā§āϰāĻļā§āύ⧇āϰ āϏāĻŽāĻžāϧāĻžāĻ¨Â 

1. 0 āĻāϰ āϏāĻšāϗ⧁āĻŖāĻ• = $\begin{array}{cc}2 & 5 \\ 4 & -2\end{array}=-(-4-20)=24$ [see āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āĻ…āϪ⧁āϰāĻžāĻļāĻŋ āĻ“ āϏāĻšāϗ⧁āĻŖāĻ•]

∴ Answer : D

 

2. 10 $\begin{array}{ccc}10 & 11 & 12 \\ 20 & 21 & 24 \\ 1 & 1 & 1\end{array}$ = 10 $\begin{array}{ccc}10 & 1 & 1 \\ 20 & 1 & 3 \\ 1 & 0 & 0\end{array}$ [c2′ = c2-c1; c3′ = c 3-c2]

= 10.1(3-1) = 20

āĻ…āĻĨāĻŦāĻž, Calculator āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰ⧇ āϏāϰāĻžāϏāϰāĻŋ āĻŽāĻžāύ āύāĻŋāĻ°ā§āϪ⧟ āĻ•āϰ⧇ āĻĢ⧇āϞ⧁āύ āĨ¤ [see Calculator Techniques in Matrix]

∴ Answer: B

 

3. $\begin{array}{ccc}1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 3 & k-4\end{array}$ = 2 [c2′ = c2-c1; c3′ = c 3-c2 see example 2 for details]

⇒ k-4-3 = 2

⇒ k = 9

∴ Answer: A

 

4. (β-2)(β+4)+5 = 0 ⇒ β2-2β+4β-8+5 = 0 [see example 2]

⇒ β2+2β-3 = 0

⇒ β2+3β-β-3 = 0

⇒ (β+3)(β-1) = 0

⇒ β = 1 āĻ…āĻĨāĻŦāĻž -3

∴ Answer: D

 

5. $\begin{array}{ccc}0 & 0 & 1 \\ x-a & a-b & b \\ x^{2}-a^{2} & c^{2}-b^{2} & b^{2}\end{array}$ = 0 [c2′ = c2-c1; c3′ = c 3-c2]

⇒ (x-a)(a-b) $\begin{array}{cc}1 & 1 \\ x+a & a+b\end{array}$ = 0 [see example x(a) for details]

⇒ (x-a)(a-b)(a+b-x-a) = 0

⇒ x = a āĻ…āĻĨāĻŦāĻž b

∴ Answer : D

6. $\begin{array}{ccc}0 & x & y \\ -2 z & x+z & z \\ -2 z & z & y+z\end{array}$ [c1′ = c1+c2+c3]

= -2z $\begin{array}{ccc}0 & x & y \\ 1 & x+z & z \\ 1 & z & y+z\end{array}$

= -2z $\begin{array}{ccc}0 & x & y \\ 0 & x & -y \\ 1 & z & y+z\end{array}$ [r1′ = r2-r3]

= -2z(-xy-xy)

= 4xyz

∴ Answer: A

 

7. (a-3)(a+4)-8 = 0

⇒ a2-3a+4a-12-8 = 0 [see example 2 for details]

⇒ a2+a-20 = 0

⇒ a2+5a-4a-20 = 0

⇒ (a+5)(a-4) = 0

⇒ a = 4 or -5

∴ Answer: A

8. $\begin{array}{ccc}1+w+w^{2} & w & w^{2} \\ 1+w+w^{2} & w^{2} & 1 \\ 1+w+w^{2} & 1 & w\end{array}$ [c1′ = c1+c2+c3]

= $\begin{array}{ccc}0 & w & w^{2} \\ 0 & w^{2} & 1 \\ 0 & 1 & w\end{array}$ [âˆĩ 1+w+w2 = 0]

= 0 [āύāĻŋāĻ°ā§āĻŖāĻžā§Ÿāϕ⧇āϰ āϧāĻ°ā§āĻŽ i]

∴ Answer: AÂ