āύāĻŋāϰā§āĻŖāĻžā§āĻ (Determinants)
āϏāĻžāϧāĻžāϰāĻŖ āϧāĻžāϰāĻŖāĻžÂ
- āύāĻŋāϰā§āĻŖāĻžā§āĻ (Determinants): āύāĻŋāϰā§āĻŖāĻžā§āĻ āĻšāϞ āĻāĻ āĻŦāĻŋāĻļā§āώ āϧāϰāύā§āϰ āĻĢāĻžāĻāĻļāύ āϝāĻž āĻāĻāĻāĻŋ āĻŦāĻžāϏā§āϤāĻŦ āϏāĻāĻā§āϝāĻžāĻā§ āĻāĻāĻāĻŋ āĻŦāϰā§āĻ āĻŽā§āϝāĻžāĻā§āϰāĻŋāĻā§āϏā§āϰ (Square Matrix) āϏāĻžāĻĨā§ āϏāĻŽā§āĻĒāϰā§āĻāĻŋāϤ āĻāϰ⧠āĨ¤ āĻā§āύ⧠nÃn āĻŦāϰā§āĻ āĻŽā§āϝāĻžāĻā§āϰāĻŋāĻā§āϏā§āϰ āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āĻā§āϰāĻŽāĻ n āĨ¤
Â
āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āĻ āĻŖā§āϰāĻžāĻļāĻŋ āĻ āϏāĻšāĻā§āĻŖāĻ (Minor and cofactor of determinants) : āϝāĻĻāĻŋ D āĻā§āύ⧠āĻŦāϰā§āĻ āĻŽā§āϝāĻžāĻā§āϰāĻŋāĻā§āϏ āĻšā§ āϤāĻŦā§ āϤāĻžāϰ āϝā§āĻā§āύ⧠āĻāĻĒāĻžāĻĻāĻžāύ dij āĻāϰ āĻ āĻŖā§āϰāĻžāĻļāĻŋāĻā§ M ij āĻĻā§āĻŦāĻžāϰāĻž āĻĒā§āϰāĻāĻžāĻļ āĻāϰāĻž āĻšā§ āĨ¤ Mij āĻšāϞ i āϤāĻŽ āϏāĻžāϰāĻŋ āĻ j āϤāĻŽ āĻāϞāĻžāĻŽ āĻŦāĻžāĻĻā§ āĻŦāĻžāĻāĻŋ āĻāĻĒāĻžāĻĻāĻžāύāĻā§āϞ⧠āĻĻā§āĻŦāĻžāϰāĻž āĻāĻ āĻŋāϤ āĻŦāϰā§āĻ āĻŽā§āϝāĻžāĻā§āϰāĻŋāĻā§āϏā§āϰ āύāĻŋāϰā§āĻŖāĻžā§āĻ āĨ¤ āϝā§āĻŽāύ :
D = $\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}$ āĻšāϞā§,
a1 āĻāϰ āĻ āĻŖā§āϰāĻžāĻļāĻŋ = M11 = $\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}$ = $\begin{array}{ll}b_{2} & c_{2} \\ b_{3} & c_{3}\end{array}$ = b2c3 â b3c2
āĻ āύā§āϰā§āĻĒāĻāĻžāĻŦā§, b1 āĻāϰ āĻ āĻŖā§āϰāĻžāĻļāĻŋ = M12 = $\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}$ = $\begin{array}{ll}a_{2} & c_{2} \\ a_{3} & c_{3}\end{array}$ = a2c3 â a3c2
āĻ āϰā§āĻĨāĻžā§, āϝāĻĻāĻŋ D āĻāϰ āĻā§āύ⧠āĻāĻĒāĻžāĻĻāĻžāύā§āϰ āĻŽāϧā§āϝ āĻĻāĻŋā§ā§ āĻāĻāĻāĻŋ āĻāύā§āĻā§āĻŽāĻŋāĻ āĻ āĻāĻāĻāĻŋ āĻāϞā§āϞāĻŽā§āĻŦ āϏāϰāϞāϰā§āĻāĻž āĻāĻžāύāĻž āϝāĻžā§ āϤāĻžāĻšāϞ⧠āĻŦāĻžāĻāĻŋ āĻāĻĒāĻžāĻĻāĻžāύāĻā§āϞ⧠āĻĻā§āĻŦāĻžāϰāĻž āĻāĻ āĻŋāϤ āύāĻŋāϰā§āĻŖāĻžā§āĻāĻ āĻšāϞ āĻ āĻāĻĒāĻžāĻĻāĻžāύā§āϰ āĻ āĻŖā§āϰāĻžāĻļāĻŋ āĨ¤
āĻāĻŦāĻžāϰ, D āĻāϰ āĻā§āύ⧠āĻāĻĒāĻžāĻĻāĻžāύ dij āĻāϰ āϏāĻšāĻā§āĻŖāĻā§ Cij āĻĻā§āĻŦāĻžāϰāĻž āĻĒā§āϰāĻāĻžāĻļ āĻāϰāĻž āĻšā§ āϝā§āĻāĻžāύ⧠Cij = (-1)i+jMij āĨ¤ āĻ āϰā§āĻĨāĻžā§, āĻ āĻŖā§āϰāĻžāĻļāĻŋāϰ āĻĒā§āϰā§āĻŦā§ āϝāĻĨāĻžāϝā§āĻā§āϝ āĻāĻŋāĻšā§āύ āĻŦāϏāĻžāϞ⧠āϏāĻāĻļā§āϞāĻŋāώā§āĻ āĻāĻĒāĻžāĻĻāĻžāύā§āϰ āϏāĻšāĻā§āĻŖāĻ āĻĒāĻžāĻā§āĻž āϝāĻžā§ āĨ¤ āϝā§āĻŽāύ :
b1 āĻāϰ āϏāĻšāĻā§āĻŖāĻ = $(-1)^{1+2} \mathrm{M}_{12}=-\begin{array}{cc}a_{2} & c_{2} \\ a_{3} & c_{3}\end{array}=-\left(\mathrm{a}_{2} \mathrm{C}_{3}-\mathrm{a}_{3} \mathrm{c}_{2}\right)$
- āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āĻŦāĻŋāϏā§āϤā§āϤāĻŋ (Expansions of Determinant) : āĻā§āύ⧠āĻŦāϰā§āĻ āĻŽā§āϝāĻžāĻā§āϰāĻŋāĻā§āϏāĻā§ āĻāĻāĻāĻŋ āύāĻŋāϰā§āĻĻāĻŋāώā§āĻ āϏāĻžāϰāĻŋ āĻāĻŋāĻāĻŦāĻž āĻāϞāĻžāĻŽ āĻŦāϰāĻžāĻŦāϰ āĻŦāĻŋāϏā§āϤā§āϤ āĻāϰ⧠āĻāϰ āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻž āĻšā§ āĨ¤ āĻ āύāĻŋāϰā§āĻĻāĻŋāώā§āĻ āĻāϞāĻžāĻŽā§āϰ/ āϏāĻžāϰāĻŋāϰ āĻĒā§āϰāϤāĻŋāĻāĻŋ āĻāĻĒāĻžāĻĻāĻžāύāĻā§ āύāĻŋāĻ āύāĻŋāĻ āϏāĻšāĻā§āĻŖāĻ āĻĻā§āĻŦāĻžāϰāĻž āĻā§āĻŖ āĻāϰ⧠āĻā§āĻŖāĻĢāϞā§āϰ āĻŦā§āĻāĻāĻžāĻŖāĻŋāϤāĻŋāĻ āϏāĻŽāώā§āĻāĻŋ āύāĻŋāϞ⧠āĻāĻā§āϤ āĻŽā§āϝāĻžāĻā§āϰāĻŋāĻā§āϏā§āϰ āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āĻŽāĻžāύ āĻĒāĻžāĻā§āĻž āϝāĻžā§ āĨ¤ āĻ āϰā§āĻĨāĻžā§, A, n āĻŽāĻžāϤā§āϰāĻžāϰ āĻā§āύ⧠āĻŦāϰā§āĻ āĻŽā§āϝāĻžāĻā§āϰāĻŋāĻā§āϏ āĻšāϞā§, āϏāĻžāϰāĻŋ āĻŦāϰāĻžāĻŦāϰ āĻŦāĻŋāϏā§āϤā§āϤ āĻāϰ⧠āĻĒāĻžāĻ,
det(A) = a11c11+a12c12+ ............ +a1nc1n
      = a21c21+a22c22+ ............ +a2nc2n
      ... ... ... ... ... ... ... ... ...
      ... ... ... ... ... ... ... ... ...
      = an1cn1+an2cn2+ ............ +amncnn
āĻ āύā§āϰā§āĻĒāĻāĻžāĻŦā§, āĻāϞāĻžāĻŽ āĻŦāϰāĻžāĻŦāϰ āĻŦāĻŋāϏā§āϤā§āϤ āĻāϰ⧠āĻĒāĻžāĻ,
det(A) = a11c11+a12c12+ ............ +a1nc1n
     = a21c21+a22c22+ ............ +a2nc2n
     ... ... ... ... ... ... ... ... ...
     ... ... ... ... ... ... ... ... ...
     = an1cn1+an2cn2+ ............ +amncnn
āĻāĻĻāĻžāĻšāϰāĻŖāϏā§āĻŦāϰā§āĻĒ, $\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & C_{3}\end{array}$  āĻŽā§āϝāĻžāĻā§āϰāĻŋāĻā§āϏāĻāĻŋāϰ āύāĻŋāϰā§āĻŖāĻžā§āĻ āύāĻŋāϰā§āĻŖā§ā§āϰ āĻāύā§āϝ āĻĒā§āϰāĻĨāĻŽ āϏāĻžāϰāĻŋ āĻŦāϰāĻžāĻŦāϰ āĻŦāĻŋāϏā§āϤā§āϤ āĻāϰ⧠āĻĒāĻžāĻ,
$\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & C_{3}\end{array}$
= $\mathrm{a}_{1} \begin{array}{cc}b_{2} & c_{2} \\ b_{3} & c_{3}\end{array}$Â - $\mathrm{b}_{1} \begin{array}{ll}a_{2} & c_{2} \\ a_{3} & c_{3}\end{array}$Â +Â $\mathrm{c}_{1} \begin{array}{ll}a_{2} & b_{2} \\ a_{3} & b_{3}\end{array}$
= a1 (b2c3 â b3c2) - b1 (a2c3 â a3c2) + c 1 (a2b3 â a3b2)
Â
āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āϧāϰā§āĻŽ (Properties of Determinants)Â
ā§§. āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āĻā§āύ⧠āϏāĻžāϰāĻŋ āĻŦāĻž āĻā§āύ⧠āĻāϞāĻžāĻŽā§āϰ āĻāĻĒāĻžāĻĻāĻžāύāĻā§āϞ⧠āĻļā§āĻŖā§āϝ āĻšāϞ⧠āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āĻŽāĻžāύ āĻļā§āĻŖā§āϝ āĻšā§ āĨ¤
⧍. āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āϏāĻžāϰāĻŋ āĻ āĻāϞāĻžāĻŽāϏāĻŽā§āĻš āĻĒāϰāϏā§āĻĒāϰ āϏā§āĻĨāĻžāύ āĻŦāĻŋāύāĻŋāĻŽā§ āĻāϰāϞ⧠āĻ āϰā§āĻĨāĻžā§ āϏāĻžāϰāĻŋāĻā§āϞ⧠āĻāϞāĻžāĻŽā§ āĻāĻŦāĻ āĻāϞāĻžāĻŽāĻā§āϞ⧠āϏāĻžāϰāĻŋāϤ⧠āĻĒāϰāĻŋāĻŖāϤ āĻāϰāϞ⧠āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āĻŽāĻžāύ āĻ āĻĒāϰāĻŋāĻŦāϰā§āϤāĻŋāϤ āĻĨāĻžāĻā§ āĨ¤
ā§Š. āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āĻĒāĻžāĻļāĻžāĻĒāĻžāĻļāĻŋ āĻĻā§āĻāĻŋ āĻāϞāĻžāĻŽ āĻāĻŋāĻāĻŦāĻž āĻĻā§āĻāĻŋ āϏāĻžāϰāĻŋ āĻĒāϰāϏā§āĻĒāϰ āϏā§āĻĨāĻžāύ āĻŦāĻŋāύāĻŋāĻŽā§ āĻāϰāϞ⧠āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āĻāĻŋāĻšā§āύ āĻĒāϰāĻŋāĻŦāϰā§āϤāĻŋāϤ āĻšā§ āĻāĻŋāύā§āϤ⧠āϏāĻžāĻāĻā§āϝāĻŽāĻžāύ āĻ āĻĒāϰāĻŋāĻŦāϰā§āϤāĻŋāϤ āĻĨāĻžāĻā§ āĨ¤
ā§Ē. āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āĻĻā§āĻāĻŋ āĻāϞāĻžāĻŽ āĻāĻŋāĻāĻŦāĻž āĻĻā§āĻāĻŋ āϏāĻžāϰāĻŋ āĻ āĻāĻŋāύā§āύ (Identical) āĻšāϞ⧠āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āĻŽāĻžāύ āĻļā§āύā§āϝ āĻšā§ āĨ¤
ā§Ģ. āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āĻā§āύ⧠āϏāĻžāϰāĻŋ āĻŦāĻž āĻāϞāĻžāĻŽā§āϰ āĻāĻĒāĻžāĻĻāĻžāύāĻā§āϞā§āĻā§ āϝāĻĨāĻžāĻā§āϰāĻŽā§ āĻ āĻĒāϰ āϏāĻžāϰāĻŋ āĻŦāĻž āĻāϞāĻžāĻŽā§āϰ āĻ āύā§āϰā§āĻĒ āĻāĻĒāĻžāĻĻāĻžāύā§āϰ āϏāĻšāĻā§āĻŖāĻ āĻĻā§āĻŦāĻžāϰāĻž āĻā§āĻŖ āĻāϰāĻž āĻšāϞ⧠āĨ¤ āĻā§āĻŖāĻĢāϞāĻā§āϞā§āϰ āϏāĻŽāώā§āĻāĻŋ āĻļā§āύā§āϝ āĻšā§ āĨ¤
ā§Ŧ. āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āĻā§āύ⧠āϏāĻžāϰāĻŋ āĻŦāĻž āĻāϞāĻžāĻŽā§āϰ āĻĒā§āϰāϤā§āϝā§āĻāĻāĻŋ āĻāĻĒāĻžāĻĻāĻžāύāĻā§ āĻā§āύ āϏā§āĻĨāĻŋāϰ āϏāĻāĻā§āϝāĻž āĻĻā§āĻŦāĻžāϰāĻž āĻā§āĻŖ āĻāϰāϞā§, āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āĻŽāĻžāύāĻā§āĻ āϏā§āĻ āϏā§āĻĨāĻŋāϰ āϏāĻāĻā§āϝāĻž āĻĻā§āĻŦāĻžāϰāĻž āĻā§āĻŖ āĻāϰāĻž āĻšā§ āĨ¤
ā§. āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āĻā§āύ⧠āϏāĻžāϰāĻŋ āĻŦāĻž āĻāϞāĻžāĻŽā§āϰ āĻĒā§āϰāϤāĻŋāĻāĻŋ āĻāĻĒāĻžāĻĻāĻžāύāĻā§ āĻā§āύ⧠āϏā§āĻĨāĻŋāϰ āϏāĻāĻā§āϝāĻž āĻĻā§āĻŦāĻžāϰāĻž āĻā§āĻŖ āĻāϰāϞ⧠āϝāĻĻāĻŋ āϝāĻĨāĻžāĻā§āϰāĻŽā§ āĻ āύā§āϝ āĻā§āύ⧠āϏāĻžāϰāĻŋ āĻŦāĻž āĻāϞāĻžāĻŽ āĻĒāĻžāĻā§āĻž āϝāĻžā§ āϤāĻŦā§ āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āĻŽāĻžāύ āĻļā§āύā§āϝ āĻšā§āĨ¤
ā§Ž. āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āĻā§āύ⧠āϏāĻžāϰāĻŋ āĻŦāĻž āĻāϞāĻžāĻŽā§āϰ āĻĒā§āϰāϤāĻŋāĻāĻŋ āĻāĻĒāĻžāĻĻāĻžāύ āĻĻā§āĻāĻāĻŋ āĻĒāĻĻ āύāĻŋā§ā§ āĻāĻ āĻŋāϤ āĻšāϞ⧠āύāĻŋāϰā§āĻŖāĻžā§āĻāĻāĻŋāĻā§ āĻ āύā§āϝ āĻĻā§āĻāĻŋ āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āϏāĻŽāώā§āĻāĻŋāϰā§āĻĒā§ āĻĒā§āϰāĻāĻžāĻļ āĻāϰāĻž āϝāĻžā§ āĨ¤
⧝. āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āĻā§āύ⧠āϏāĻžāϰāĻŋ āĻŦāĻž āĻāϞāĻžāĻŽā§āϰ āĻĒā§āϰāϤāĻŋāĻāĻŋ āĻāĻĒāĻžāĻĻāĻžāύ āϝāĻĨāĻžāĻā§āϰāĻŽā§ āĻ āύā§āϝ āĻāĻāĻāĻŋ āϏāĻžāϰāĻŋ āĻŦāĻž āĻāϞāĻžāĻŽā§āϰ āĻ āύā§āϰā§āĻĒ āĻāĻĒāĻžāĻĻāĻžāύā§āϰ āĻāĻāĻāĻŋ āĻā§āĻŖāĻŋāϤāĻ āĻĻā§āĻŦāĻžāϰāĻž āĻŦā§āĻĻā§āϧāĻŋ āĻŦ āĻšā§āϰāĻžāϏ āĻāϰāĻž āĻšāϞ⧠āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āĻŽāĻžāύ āĻ āĻĒāϰāĻŋāĻŦāϰā§āϤāĻŋāϤ āĻĨāĻžāĻā§ āĨ¤
Â
āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āϏāĻžāĻšāĻžāϝā§āϝ⧠āϏāϰāϞ āϏāĻŽā§āĻāϰāĻŖ āĻā§āĻā§āϰ āϏāĻŽāĻžāϧāĻžāύ
ā§§. āϏāĻŽā§āĻāϰāĻŖ āĻā§āĻā§āϰ āĻāϞāĻāϏāĻŽā§āĻšā§āϰ āϏāĻšāĻāĻā§āϞ⧠āĻĒāĻžāĻļāĻžāĻĒāĻžāĻļāĻŋ āĻāϞāĻžāĻŽ āĻšāĻŋāϏā§āĻŦā§ āύāĻŋā§ā§ āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰāϤ⧠āĻšāĻŦā§ āĨ¤ āĻāĻā§āϤ āύāĻŋāϰā§āĻŖāĻžā§āĻāĻā§ D āĻŦāĻž Î āĻĻā§āĻŦāĻžāϰāĻž āϏā§āĻāĻŋāϤ āĻāϰāĻž āĻšā§ āĨ¤
⧍. āĻāϰāĻĒāϰ āĻāĻā§āϤ āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āĻĒā§āϰāĻĨāĻŽ āĻāϞāĻžāĻŽāĻā§ āϏāĻŽā§āĻāϰāĻŖāĻā§āĻā§āϰ āϧā§āϰā§āĻŦ āĻĒāĻĻ āĻĻā§āĻŦāĻžāϰāĻž āĻĒā§āϰāϤāĻŋāϏā§āĻĨāĻžāĻĒāĻŋāϤ āĻāϰ⧠āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āĻŽāĻžāύ āύāĻŋāϞ⧠āĻĒā§āϰāĻĨāĻŽ āĻāϞāĻžāĻŽā§āϰ āϏāĻāĻļā§āϞāĻŋāώā§āĻ āĻāϞāĻā§āϰ āĻāύā§āϝ āĻāĻāĻāĻŋ āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āĻŽāĻžāύ āĻĒāĻžāĻā§āĻž āϝāĻžāĻŦā§ āĨ¤
ā§Š. āĻāĻāĻžāĻŦā§ āĻĒā§āϰāϤāĻŋ āĻāϞāĻžāĻŽā§āϰ āĻāύā§āϝ āĻĒā§āϰāĻā§āϰāĻŋā§āĻž (ii) āĻĒā§āύāϰāĻžāĻŦā§āϤā§āϤāĻŋ āĻāϰ⧠āϝāĻĨāĻžāĻā§āϰāĻŽā§ D x/Îx, Dy/Îy, Dz/Îz ...... āĻāϤā§āϝāĻžāĻĻāĻŋ āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āĻŽāĻžāύ āĻĒāĻžāĻā§āĻž āϝāĻžāĻŦā§ āĨ¤
ā§Ē. x/Îx = y/Îy = z/Îz = ...... = 1/Î āĻāϤā§āϝāĻžāĻĻāĻŋāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻž āϝāĻžā§ āĨ¤
Â
āĻāĻžāĻŖāĻŋāϤāĻŋāĻ āϏāĻŽāϏā§āϝāĻžāϰ āĻāĻĻāĻžāĻšāϰāĻŖ āĻ āϏāĻŽāĻžāϧāĻžāύÂ
1. āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰ : $\begin{array}{lll}13 & 16 & 19 \\ 14 & 17 & 20 \\ 15 & 18 & 21\end{array}$
āĻāĻāĻžāύā§, $\begin{array}{lll}13 & 16 & 19 \\ 14 & 17 & 20 \\ 15 & 18 & 21\end{array}$
=Â $\begin{array}{lll}13 & 3 & 3 \\ 14 & 3 & 3 \\ 15 & 3 & 3\end{array}$
= 0 [see āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āϧāϰā§āĻŽ ā§Ē]
āĻ āĻĨāĻŦāĻž, āϏāϰāĻžāϏāϰāĻŋ Calculator āĻĒā§āϰā§ā§āĻ āĻāϰā§āĻ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻž āϝāĻžā§ āĨ¤ [see Determinants of matrix in Matrix chapter]
2. $\begin{array}{cc}2 & a+2 \\ a-4 & 8\end{array}$ āĻāϰ āĻŽāĻžāύ āĻļā§āύā§āϝ āĻšāϞ⧠a āĻāϰ āĻŽāĻžāύ āĻāϤ?
āĻāĻāĻžāύā§, $\begin{array}{cc}2 & a+2 \\ a-4 & 8\end{array}=0$
â 16 â (a+2)(a-4) = 0
â 16 â (a2+2a-4a-8) = 0
â 16- a2+2a+8 = 0
â - a2+2a+24 = 0
â a2-2a-24 = 0
â a2-6a+4a-24 = 0
â (a-6)(a+4) = 0
â a = 6, -4
3. āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰ :
a. $\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}$
Â
b. $\begin{array}{ccc}1 & -w & w^{2} \\ -w & w^{2} & 1 \\ w^{2} & 1 & -w\end{array}$ āϝā§āĻāĻžāύ⧠w āĻšāϞ 1 āĻāϰ āĻāĻāĻāĻŋ āĻāĻžāϞā§āĻĒāύāĻŋāĻ āĻāύāĻŽā§āϞ
Â
c. $\begin{array}{ccc}1 & 1 & 1 \\ 1 & p & p^{2} \\ 1 & p^{2} & p^{4}\end{array}$
Â
d. $\begin{array}{lll}1 & x & y+z \\ 1 & y & z+x \\ 1 & z & x+y\end{array}$
Â
e. $\begin{array}{ccc}a & b & c \\ a^{2} & b^{2} & c^{2} \\ a^{3} & b^{3} & c^{3}\end{array}$
Â
f.  $\begin{array}{ccc}1+x_{1} & x_{2} & x_{3} \\ x_{1} & 1+x_{2} & x_{3} \\ x_{1} & x_{2} & 1+x_{3}\end{array}$Â
Â
g. $\begin{matrix}\log{x}&\log{y}&\log{z}\\\log{2x}&\log{2y}&\log{2z}\\\log{3x}&\log{3y}&\log{3z}\\\end{matrix}$
āĻĒā§āϰāĻĨāĻŽā§āĻ āĻŦāĻŋāϏā§āϤāĻžāϰ āύāĻž āĻāϰ⧠āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āĻŦāĻŋāĻāĻŋāύā§āύ āϧāϰā§āĻŽ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰ⧠āϏāĻāĻā§āώā§āĻĒā§ āĻ āϏāĻšāĻā§ āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻž āϝāĻžā§ āĨ¤ āϤāĻŦā§ āĻ āĻŋāĻ āĻā§āύ āϧāϰā§āĻŽāĻāĻŋ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰāϞ⧠āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻ āĻĒā§āĻā§āώāĻžāĻā§āϤ/ āĻ āϧāĻŋāĻāϤāϰ āϏāĻšāĻ āĻšāĻŦā§ āϤāĻž āĻā§āύ āĻāĻā§āĻŦāĻžāĻāϧāĻž āύāĻŋā§āĻŽā§āϰ āĻĻā§āĻŦāĻžāϰāĻž āύāĻŋāϰā§āĻĻāĻŋāώā§āĻ āύā§, āĻ āϰā§āĻĨāĻžā§ āϤāĻž āĻ āύā§āĻāĻžāĻāĻļā§āĻ āĻļāĻŋāĻā§āώāĻžāϰā§āĻĨā§āϰ āϏā§āĻŦāĻā§āĻāĻž(?) (Intuition) āĻ āĻŦāĻŋāĻļā§āϞā§āώāĻŖ āĻā§āώāĻŽāϤāĻž (Analytical ability) āĻāϰ āĻāĻĒāϰ āύāĻŋāϰā§āĻāϰ āĻāϰ⧠āĨ¤ āϤāĻŦā§ āϏāĻŦāϏāĻŽā§āĻ āĻĒā§āϰāĻĨāĻŽā§ āĻā§āώā§āĻāĻž āĻāϰāϤ⧠āĻšāĻŦā§ cmmon/āϏāĻžāϧāĻžāϰāĻŖ āĻāĻĒāĻžāĻĻāĻžāύ āĻā§āϞ⧠āĻŦā§āϰ āĻāϰ⧠āĻāύāĻžāϰ āĨ¤ āĻāϰāĻĒāϰ āĻĻā§āĻāϤ⧠āĻšāĻŦā§ āϝ⧠āĻāĻžāĻŖāĻŋāϤāĻŋāĻ āĻĒā§āϰāĻā§āϰāĻŋā§āĻžāϰ āĻŽāĻžāϧā§āϝāĻŽā§ āĻĒāĻžāĻļāĻžāĻĒāĻžāĻļāĻŋ āĻāϞāĻžāĻŽ āĻŦāĻž āϏāĻžāϰāĻŋāϤ⧠āĻāĻāĻ āĻāĻĒāĻžāĻĻāĻžāύ āĻāύāĻž āϝāĻžā§ āĻāĻŋāύāĻž, āĻā§āύāύāĻž āϏā§āĻā§āώā§āϤā§āϰ⧠āϏāϰāĻžāϏāϰāĻŋ āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āĻŽāĻžāύ āĻļā§āĻŖā§āϝ āĻšā§ā§ āϝāĻžāĻŦā§ āĨ¤ āĻ āĻĨāĻŦāĻž āĻā§āώā§āĻāĻž āĻāϰāϤ⧠āĻšāĻŦā§ āĻā§āύ āύāĻŋāϰā§āĻĻāĻŋāώā§āĻ āϏāĻžāϰāĻŋ āĻŦāĻž āĻāϞāĻžāĻŽā§āϰ āϏāϰā§āĻŦā§āĻā§āĻ āϏāĻāĻā§āϝāĻ āĻāĻĒāĻžāĻĻāĻžāύāĻā§ āĻļā§āĻŖā§āϝ⧠āĻĒāϰāĻŋāĻŖāϤ āĻāϰāĻžāϰ āĨ¤ āϏā§āĻā§āώā§āϤā§āϰ⧠āĻŦāĻŋāϏā§āϤā§āϤāĻŋāϤ⧠āĻāĻĒāĻžāĻĻāĻžāύāϏāĻāĻā§āϝāĻž āĻāĻŽā§ āϝāĻžā§ āĻĢāϞ⧠āϏāĻšāĻ āϏāϰāϞā§āĻāϰāĻŖ āϏāĻŽā§āĻāĻŦ āĻšā§ āĨ¤
a. āĻāĻāĻžāύā§, $\begin{array}{ccc}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}$
= $\begin{array}{ccc}0 & a-b & a^{2}-b^{2} \\ 0 & b-c & b^{2}-c^{2} \\ 1 & c & c^{2}\end{array}$ [r1Ⲡ= r1-r2; r2Ⲡ= r 2-r3]
=(a-b)(b-c) $\begin{array}{ccc}0 & 1 & a+b \\ 0 & 1 & b+c \\ 1 & c & c^{2}\end{array}$ [r1 āĻĨā§āĻā§ (a-b) āĻāĻŦāĻ r2 āĻĨā§āĻā§ (b-c) common āύāĻŋā§ā§ ]
= (a-b)(b-c)(b+c-a-b) [c1 āĻŦāϰāĻžāĻŦāϰ āĻŦāĻŋāϏā§āϤā§āϤ āĻāϰā§]
= (a-b)(b-c)(c-a)
b. āĻāĻāĻžāύā§, $\begin{array}{ccc}1 & -w & w^{2} \\ -w & w^{2} & 1 \\ w^{2} & 1 & -w\end{array}$
= $\begin{array}{ccc}1 & 0 & 0 \\ -w & 0 & 1+w^{3} \\ w^{2} & 1+w^{3} & 0\end{array}$ [c2Ⲡ= c2+c1-w; c3Ⲡ= c 3+c2-w]
= $\begin{array}{ccc}1 & 0 & 0 \\ -w & 0 & 2 \\ w^{2} & 2 & 0\end{array}$Â [âĩ w3 = 1]
= 1(0-4) [r1 āĻŦāϰāĻžāĻŦāϰ āĻŦāĻŋāϏā§āϤā§āϤ āĻāϰā§]
= -4
c. āĻāĻāĻžāύā§, $\begin{array}{ccc}1 & 1 & 1 \\ 1 & p & p^{2} \\ 1 & p^{2} & p^{4}\end{array}$
= $\begin{array}{ccc}1 & 0 & 0 \\ 1 & p-1 & p^{2}-p \\ 1 & p^{2}-1 & p^{4}-p^{2}\end{array}$ [c2Ⲡ= c2-c1; c3Ⲡ= c 3-c2]
= $\begin{array}{cc}p-1 & p(p-1) \\ p^{2}-1 & p^{2}\left(p^{2}-1\right)\end{array}$ [r1 āĻŦāϰāĻžāĻŦāϰ āĻŦāĻŋāϏā§āϤā§āϤ āĻāϰā§]
= (p-1)(p2-1)Â $\begin{array}{cc}1 & p \\ 1 & p^{2}\end{array}$
= (p-1)(p2-1)(p2-p)
= p(p-1)(p2-1)
Â
d. āĻāĻāĻžāύā§, $\begin{array}{ccc}1 & x & y+z \\ 1 & y & z+x \\ 1 & Z & x+y\end{array}$
= $\begin{array}{ccc}1 & x & x+y+z \\ 1 & y & x+y+z \\ 1 & Z & x+y+z\end{array}$ [c3Ⲡ= c2+c3]
= (x+y+z)Â $\begin{array}{lll}1 & x & 1 \\ 1 & y & 1 \\ 1 & Z & 1\end{array}$
= 0 [see āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āϧāϰā§āĻŽ iv]
e. āĻāĻāĻžāύā§, $\begin{array}{ccc}a & b & c \\ a^{2} & b^{2} & c^{2} \\ a^{3} & b^{3} & c^{3}\end{array}$
=Â $\begin{array}{cccc} & 1 & 1 & 1 \\ a b c & a & b & c \\ & a^{2} & b^{2} & c^{2}\end{array}$
= $\begin{array}{rll} & 1 & a & a^{2} \\ a b c & 1 & b & b^{2} \\ & 1 & c & c^{2}\end{array}$ [āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āϧāϰā§āĻŽ ii]
= abc(a-b)(b-c)(c-a) [see example 3(a)]
f. āĻāĻāĻžāύā§, $\begin{array}{ccc}1+x_{1} & x_{2} & x_{3} \\ x_{1} & 1+x_{2} & x_{3} \\ x_{1} & x_{2} & 1+x_{3}\end{array}$
= $\begin{array}{ccc}1+x_{1}+x_{2}+x_{3} & x_{2} & x_{3} \\ 1+x_{1}+x_{2}+x_{3} & 1+x_{2} & x_{3} \\ 1+x_{1}+x_{2}+x_{3} & x_{2} & 1+x_{3}\end{array}$ [c1Ⲡ= c1+c2+c3]
= (1+x1+x2+x3)Â $\begin{array}{ccc}1 & x_{2} & x_{3} \\ 1 & 1+x_{2} & x_{3} \\ 1 & x_{2} & 1+x_{3}\end{array}$
= (1+x1+x2+x3) $\begin{array}{ccc}0 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & x_{2} & 1+x_{3}\end{array}$ [r1Ⲡ= r1-r2; r2Ⲡ= r 2-r3]
= (1+x1+x2+x3)1(1-0) [c1 āĻŦāϰāĻžāĻŦāϰ āĻŦāĻŋāϏā§āϤā§āϤ āĻāϰā§]
= 1+x1+x2+x3
Â
g. āĻāĻāĻžāύā§, $\begin{array}{ccc}\log x & \log y & \log z \\ \log 2 x & \log 2 y & \log 2 z \\ \log 3 x & \log 3 y & \log 3 z\end{array}$
= $\begin{array}{ccc}\log x & \log y & \log z \\ \log 2 x-\log x & \log 2 y-\log y & \log 2 z-\log z \\ \log 3 x-\log 2 x & \log 3 y-\log 2 y & \log 3 z-\log 2 z\end{array}$ [r2Ⲡ= r2-r1; r3Ⲡ= r 3-r2]
= $\begin{array}{lcc}\log x & \log y & \log z \\ \log 2 & \log 2 & \log 2 \\ \log 3 / 2 & \log 3 / 2 & \log 3 / 2\end{array}$Â [âĩ logm-logn = log(m/n)]
= log2.log(3/2)Â $\begin{array}{ccc}\log x & \log y & \log z \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}$
= 0 [see āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āϧāϰā§āĻŽ iv]
4. āϏāĻŽāĻžāϧāĻžāύ āĻāϰ : x+y-z = 3
2x+3y+z = 10
3x-y-7z = 1
āĻāĻāĻžāύā§, D = Î = $\begin{array}{ccc}1 & 1 & -1 \\ 2 & 3 & 1 \\ 3 & -1 & -7\end{array}$ = 1(-21+1)-1(-14-3)-1(-2-9) = 8
Dx = Îx = $\begin{array}{ccc}3 & 1 & -1 \\ 10 & 3 & 1 \\ 1 & -1 & -7\end{array}$Â = 3(-21+1)-1(-70-1)-(-10-3) = 24
Dy = Îy = $\begin{array}{ccc}3 & 1 & -1 \\ 10 & 3 & 1 \\ 1 & -1 & -7\end{array}$Â = 1(-70-1)-3(-14-3)-1(2-30) = 8
Dz = Îz = $\begin{array}{ccc}1 & 3 & -1 \\ 2 & 10 & 1 \\ 3 & 1 & -7\end{array}$Â = 1(3+10)-1(2-30)+3(-2-9) = 8
â´ x = Dx/D = Îx/Î = 3
â´ y = Dy/D = Îy/Î = 3
â´ z = Dz/D = Îz/Î = 3
Calculator Techniques :
2 āĻŦāĻž 3 āĻāϞāĻāĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāϰāϞ āϏāĻŽā§āĻāϰāĻŖāĻā§āĻā§āϰ āϏāĻŽāĻžāϧāĻžāύ Calculator āĻ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻž āϝāĻžā§ :
1. Equation mode āĻ āϝā§āϤ⧠āĻāĻžāĻĒā§āύ- $$
\begin{array}{|c|c|}
\hline \text { MODE } & \text { MODE } & \text { MODE } & 1 \\
\hline
\end{array}
$$
2. āĻāϞāĻ āϏāĻāĻā§āϝāĻž Input āĻāϰā§āύ āĨ¤ āϝā§āĻŽāύ : Example 4 āĻ āĻāϞāĻ āϤāĻŋāύāĻāĻŋ x,y,z āĨ¤ â´ āĻāĻžāĻĒā§āύ- 3
3. āϤāĻŋāύāĻāĻŋ āĻāϞāĻāĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāĻŽā§āĻāϰāĻŖ calculator āĻ āύāĻŋāĻā§āϰ āĻāĻā§āϤāĻŋāϤ⧠Input āĻāϰāϤ⧠āĻšā§-
a1x+b1y+c1z = d1
a2x+b2y+c2z = d2
a3x+b3y+c3z = d3
āϝā§āĻŽāύ : Example 4 āĻāϰ āĻāϞāĻāϏāĻŽā§āĻšā§āϰ āϏāĻšāĻāĻā§āϞ⧠Input āĻāϰāϤ⧠āĻāĻžāĻĒā§āύ-
āĻĸāĻžāĻŦāĻŋāϰ āĻŦāĻŋāĻāϤ āĻŦāĻāϰā§āϰ āĻĒā§āϰāĻļā§āύ āĻ āϏāĻŽāĻžāϧāĻžāύÂ
āĻĸāĻžāĻŦāĻŋāϰ āĻŦāĻŋāĻāϤ āĻŦāĻāϰā§āϰ āĻĒā§āϰāĻļā§āύ :
1. $\begin{array}{ccc}2 & -1 & 5 \\ 4 & 3 & -2 \\ 1 & 0 & 6\end{array}$ āύāĻŋāϰā§āĻŖāĻžā§āĻāĻāĻŋāϰ 0 āĻāϰ āϏāĻšāĻā§āĻŖāĻ āĻāϤ?
a. 18
b. -24
c. 16
d. 24
2. $\begin{array}{lll}10 & 11 & 12 \\ 20 & 21 & 24 \\ 10 & 10 & 10\end{array}$ āĻāϰ āĻŽāĻžāύ āĻāϤ?
a. 10
b. 20
c. 1
d. 0
3. $\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & k\end{array}$ āύāĻŋāϰā§āĻŖāĻžā§āĻāĻāĻŋāϰ āĻŽāĻžāύ 2 ; k āĻāϰ āĻŽāĻžāύ āĻāϤ?
a. 9
b. 8
c. 7
d. 6
4. $\begin{array}{lc}\beta & 1 \\ -5 & \beta+4\end{array}$ āύāĻŋāϰā§āĻŖāĻžā§āĻāĻāĻŋāϰ āĻŽāĻžāύ āĻļā§āύā§āϝ āĻšāϞā§, β āĻāϰ āĻŽāĻžāύ āĻāϤ?
a. 5 āĻ āĻĨāĻŦāĻž 0
b. 6 āĻ āĻĨāĻŦāĻž 2
c. 5 āĻ āĻĨāĻŦāĻž -3
d. 1 āĻ āĻĨāĻŦāĻž -3
5. $\begin{array}{ccc}1 & 1 & 1 \\ x & a & b \\ x^{2} & a^{2} & b^{2}\end{array}$ āĻšāϞā§
a. âa āĻŦāĻž b
b. a āĻŦāĻž -b
c. âa āĻŦāĻž -b
d. a āĻŦāĻž -b
6. $\begin{array}{ccc}x+y & x & y \\ x & x+z & z \\ y & z & y+z\end{array}$ āύāĻŋāϰā§āĻŖāĻžā§āĻāĻāĻŋāϰ āĻŽāĻžāύ-
a. 4xyz
b. x2yz
c. xy2z
d. xyz2
7. $\begin{array}{cc}a-3 & -1 \\ -8 & a-4\end{array}$ āύāĻŋāϰā§āĻŖāĻžā§āĻāĻāĻŋāϰ āĻŽāĻžāύ āĻļā§āύā§āϝ āĻšāϞ⧠a āĻāϰ āĻŽāĻžāύ-
a. 4 or -5
b. 5 or -4
c. 3
d. 10
Â
8. w āϝāĻĻāĻŋ 1 āĻāϰ āĻāĻāĻāĻŋ āĻāύāĻŽā§āϞ āĻšā§, āϤāĻŦā§ āĻĒā§āϰāĻĻāϤā§āϤ āύāĻŋāϰā§āĻŖāĻžā§āĻāĻāĻŋāϰ āĻŽāĻžāύ-
$\begin{array}{ccc}1 & w & w^{2} \\ w & w^{2} & 1 \\ w^{2} & 1 & w\end{array}$
a. 0
b. 1
c. w
d. w2
Â
āĻĸāĻžāĻŦāĻŋāϰ āĻŦāĻŋāĻāϤ āĻŦāĻāϰā§āϰ āĻĒā§āϰāĻļā§āύā§āϰ āϏāĻŽāĻžāϧāĻžāύÂ
1. 0 āĻāϰ āϏāĻšāĻā§āĻŖāĻ = $\begin{array}{cc}2 & 5 \\ 4 & -2\end{array}=-(-4-20)=24$ [see āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āĻ āĻŖā§āϰāĻžāĻļāĻŋ āĻ āϏāĻšāĻā§āĻŖāĻ]
â´ Answer : D
Â
2. 10 $\begin{array}{ccc}10 & 11 & 12 \\ 20 & 21 & 24 \\ 1 & 1 & 1\end{array}$ = 10 $\begin{array}{ccc}10 & 1 & 1 \\ 20 & 1 & 3 \\ 1 & 0 & 0\end{array}$ [c2Ⲡ= c2-c1; c3Ⲡ= c 3-c2]
= 10.1(3-1) = 20
āĻ āĻĨāĻŦāĻž, Calculator āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰ⧠āϏāϰāĻžāϏāϰāĻŋ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰ⧠āĻĢā§āϞā§āύ āĨ¤ [see Calculator Techniques in Matrix]
â´ Answer: B
Â
3. $\begin{array}{ccc}1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 3 & k-4\end{array}$ = 2 [c2Ⲡ= c2-c1; c3Ⲡ= c 3-c2 see example 2 for details]
â k-4-3 = 2
â k = 9
â´ Answer: A
Â
4. (β-2)(β+4)+5 = 0 â β2-2β+4β-8+5 = 0 [see example 2]
â β2+2β-3 = 0
â β2+3β-β-3 = 0
â (β+3)(β-1) = 0
â β = 1 āĻ āĻĨāĻŦāĻž -3
â´ Answer: D
Â
5. $\begin{array}{ccc}0 & 0 & 1 \\ x-a & a-b & b \\ x^{2}-a^{2} & c^{2}-b^{2} & b^{2}\end{array}$ = 0 [c2Ⲡ= c2-c1; c3Ⲡ= c 3-c2]
â (x-a)(a-b) $\begin{array}{cc}1 & 1 \\ x+a & a+b\end{array}$Â = 0 [see example x(a) for details]
â (x-a)(a-b)(a+b-x-a) = 0
â x = a āĻ āĻĨāĻŦāĻž b
â´ Answer : D
6. $\begin{array}{ccc}0 & x & y \\ -2 z & x+z & z \\ -2 z & z & y+z\end{array}$ [c1Ⲡ= c1+c2+c3]
= -2z $\begin{array}{ccc}0 & x & y \\ 1 & x+z & z \\ 1 & z & y+z\end{array}$
= -2z $\begin{array}{ccc}0 & x & y \\ 0 & x & -y \\ 1 & z & y+z\end{array}$ [r1Ⲡ= r2-r3]
= -2z(-xy-xy)
= 4xyz
â´ Answer: A
Â
7. (a-3)(a+4)-8 = 0
â a2-3a+4a-12-8 = 0 [see example 2 for details]
â a2+a-20 = 0
â a2+5a-4a-20 = 0
â (a+5)(a-4) = 0
â a = 4 or -5
â´ Answer: A
8. $\begin{array}{ccc}1+w+w^{2} & w & w^{2} \\ 1+w+w^{2} & w^{2} & 1 \\ 1+w+w^{2} & 1 & w\end{array}$ [c1Ⲡ= c1+c2+c3]
= $\begin{array}{ccc}0 & w & w^{2} \\ 0 & w^{2} & 1 \\ 0 & 1 & w\end{array}$Â [âĩ 1+w+w2 = 0]
= 0 [āύāĻŋāϰā§āĻŖāĻžā§āĻā§āϰ āϧāϰā§āĻŽ i]
â´ Answer: AÂ